
Exercises from Section 1.2.2

Tord M. Johnson

January 30, 2014

1. [00] What is the smallest positive rational number?

There is no smallest positive rational number. To see why, let q > 0 be this smallest number, in
which case, clearly, q > q/2 > 0, a contradiction. Hence, there is no smallest positive rational
number.

2. [00] Is 1 + 0.239999999 . . . a decimal expansion?

The expression 1 + 0.239999999 . . . is not a valid decimal expansion, at least according to the
definition given in the text on page 21, as it violates the requirement that the sequence of digits
doesn’t end with infinitely many 9s.

3. [02] What is (−3)−3?

We can simplify the expression using the rules (4) on page 22, and simple arithmetic.

(−3)−3 =
(−3)−2

(−3)

=
(−3)−1

(−3)(−3)

=
(−3)−1

9

=
(−3)0

(−3)(9)

=
(−3)0

−27

=
1

−27

= − 1

27

And so, (−3)−3 = − 1
27 .

I 4. [05] What is (0.125)−2/3?

1

Exercises from Section 1.2.2 2

We can simplify the expression using the rules (4) and (6) on page 22, and simple arithmetic.

(0.125)−2/3 = (
1

8
)−2/3

=
3

√
(
1

8
)−2

=
3

√
(8)(

1

8
)−1

=
3

√
(8)(8)(

1

8
)0

=
3

√
(64)(

1

8
)0

= 3
√

(64)(1)

=
3
√

64

= 4

And so, (0.125)−2/3 = 4.

5. [05] We defined real numbers in terms of a decimal expansion. Discuss how we could have defined them
in terms of a binary expansion instead, and give a definition to replace Eq. (2).

We could have defined real numbers in terms of a binary expansion by simply using the base two
number system instead of base ten.

A real number is a quantity x that has a binary expansion

x = n+ 0.d1d2d3 . . . , (5.1)

where n is an integer, each di is a digit between 0 and 1, and the sequence of digits
doesn’t end with infinitely many 1s. The representation (5.1) means that

n+
d1
2

+
d2
4

+ · · ·+ dk
2k
≤ x < n+

d1
2

+
d2
4

+ · · ·+ dk
2k

+
1

2k
, (5.2)

for all positive integers k.

6. [10] Let x = m+ 0.d1d2 . . . and y = n+ 0.e1e2 . . . be real numbers. Give a rule for determining whether
x = y, x < y, or x > y, based on the decimal representation.

Given x = m + 0.d1d2 . . . and y = n + 0.e1e2 . . . be real numbers, we can define the following
relations.

x = y. x is equivalent to y if m = n and di = ei for all i ≥ 1.

x < y. x is less than y if either m < n or (m = n and) d1 < e1 or (m = n and) di = ei
for all 1 ≤ i < k and dk < ek.

x > y. x is greater than y if either m > n or (m = n and) d1 > e1 or (m = n and)
di = ei for all 1 ≤ i < k and dk > ek.

7. [M23] Given that x and y are integers, prove the laws of exponents, starting from the definition given
by Eq. (4).

Given integers x, y; a positive real number b; and Eq. (4) on page 22, we may prove Eq. (5).

Proposition. bx+y = bxby for any positive real number b and integers x, y.

Exercises from Section 1.2.2 3

Proof. Assume b an arbitrary positive real and x, y integers. We must show that
bx+y = bxby. If x = 0, then clearly:

bx+y = b0+y

= by

= (1)by

= b0by

= bxby

Then, for the inductive step, we consider two cases, x ≥ 0 and x ≤ 0.

Case 1. [x ≥ 0.] Assuming bk+y = bkby for k ≥ 0, we must show that
b(k+1)+y = bk+1by. But:

b(k+1)+y = bk+y+1

= bk+yb1

= bkbyb1

= bkb1by

= bk+1by

as we needed to show in this case.

Case 2. [x ≤ 0.] Assuming bk+y = bkby for k ≤ 0, we must show that
b(k−1)+y = bk−1by. But:

b(k−1)+y = bk+y−1

= bk+yb−1

= bkbyb−1

= bkb−11by

= bk−1by

as we needed to show in this case.

Therefore, bx+y = bxby for any positive real number b and integers x, y as we needed
to show.

Proposition. (bx)y = bxy for any positive real number b and integers x, y.

Proof. Assume b an arbitrary positive real and x, y integers. We must show that
(bx)y = bxy. If x = 0, then clearly:

(b0)y = 1y

= 1

= b0

= b0y

= bxy

Then, for the inductive step, we consider two cases, x ≥ 0 and x ≤ 0.

Exercises from Section 1.2.2 4

Case 1. [x ≥ 0.] Assuming (bk)y = bky for k ≥ 0, we must show that
(bk+1)y = b(k+1)y. But from the previous proposition:

(bk+1)y = (bkb1)y

= (bkb)y

= (bk)yby

= bkyby

= bky+y

= b(k+1)y

as we needed to show in this case.

Case 2. [x ≤ 0.] Assuming (bk)y = bky for k ≤ 0, we must show that
(bk−1)y = b(k−1)y. But from the previous proposition:

(bk−1)y = (bkb−1)y

= (bk)y(b−1)y

= bkyb−y

= bky−y

= b(k−1)y

as we needed to show in this case.

Therefore, (bx)y = bxy for any positive real number b and integers x, y as we needed to
show.

8. [25] Let m be a positive integer. Prove that every positive real number u has a unique positive mth
root, by giving a method to construct successively the values n, d1, d2, . . . in the decimal expansion of the
root.

Given a positive real number u and positive integer m, we may present a method to construct
m
√
u = n+ d1d2 . . . , and in so doing, prove that m

√
u exists uniquely.

First, determine n by evaluating for which integer j ≥ 0

jm ≤ u < (j + 1)m

and let n = j.

Then, for k ≥ 1, we successively determine for which integers dk, 1 ≤ dk ≤ 9

(n+
∑

1≤i≤k

di
10i

)m ≤ u < (n+
∑

1≤i≤k

di
10i

+
1

10k
)m

for k as great as we please.

9. [M23] Given that x and y are rational, prove the laws of exponents under the assumption that the laws
hold when x and y are integers.

We may prove the laws of exponents for rational exponents, assuming the laws for integer expo-
nents.

Proposition. bx+y = bxby for any positive real number b and rationals x, y.

Exercises from Section 1.2.2 5

Proof. Assume b an arbitrary positive real and x = p/q, y = r/s rationals. We must
show that bx+y = bxby. But:

bx+y = bp/q+r/s

= b(ps+rq)/(qs)

= (bps+rq)1/(qs)

= (bpsbrq)1/(qs)

= (bps)1/(qs))(brq)1/(qs)

= bps/qsbrq/qs

= bp/qbr/s

= bxby

Proposition. (bx)y = bxy for any positive real number b and rationals x, y.

Proof. Assume b an arbitrary positive real and x = p/q, y = r/s rationals. We must
show that (bx)y = bxy. But:

(bx)y = (bp/q)r/s

= ((bp)1/q)r/s

= (bp)r/(qs)

= (bpr)1/(qs)

= b(pr)/(qs)

= b(p/q)(r/s)

= bxy

10. [18] Prove that log10 2 is not a rational number.

We may prove that log10 2 is not a rational number.

Proposition. log10 2 is irrational.

Proof. Assume that it is not. That is, assume log10 2 = p/q for some positive integers
p, q. That is, assume 10p/q = 2 or equivalently, 10p = 2q. But no such positive integers
exist. Hence, log10 2 is irrational.

I 11. [10] If b = 10 and x ≈ log10 2, to how many decimal places of accuracy will we need to know the
value of x in order to determine the first three decimal places of the decimal expansion of bx? [Note: You
may use the result of exercise 10 in your discussion.]

As a result of the proof from exercise 10, since log10 2 is irrational, bx for b = 10 and x = log10 2
(that is, an irrational power x of 10), we may never know enough decimal places of x in order to
determine the first three decimal places of the decimal expansion of bx.

12. [02] Explain why Eq. (10) follows from Eqs. (8).

Eq. (10) claims that
log10 2 = 0.30102999 . . .

Exercises from Section 1.2.2 6

and by the definition of Eq. (7) and results of Eqs. (8) we have that

1.9999999739 . . . = 100.30102999 ≤ 2 < 100.30103000 = 2.0000000199 . . .

Taking logarithms yields
0.30102999 ≤ log10 2 < 0.30103000

and so by definition of decimal expansion, log10 2 = 0.30102999

I 13. [M23] (a) Given that x is a positive real number and n is a positive integer, prove the inequality
n
√

1 + x− 1 ≤ x/n. (b) Use this fact to justify the remarks following (7).

First, we must prove a relation.

Proposition. n
√

1 + x − 1 ≤ x/n for any positive real numbers x and all positive
integers n.

Proof. Let x by an arbitrary positive real number so that x > 0. We must show that
n
√

1 + x − 1 ≤ x/n for all integers n > 0, or equivalently, that ny + 1 ≤ (y + 1)n for
y = x/n.

For n = 1, clearly y + 1 ≤ (y + 1)1. Then, assuming ky + 1 ≤ (y + 1)k for k > 0, we
must show that (k + 1)y + 1 ≤ (y + 1)k+1. But:

(k + 1)y + 1 = ky + 1 + y

≤ (y + 1)k + y

≤ (y + 1)k + (y + 1)

≤ (y + 1)k(y + 1)

= (y + 1)k+1

For x = b− 1 and n = 10k, this fact tells us that

10k
√

1 + (b− 1)− 1 = b1/10
k

− 1 ≤ (b− 1)/10k

Since bn+d1/10+...+dk/10
k ≤ bn+1, we have

bn+d1/10+...+dk/10
k

b1/10
k

− 1 ≤ bn+1(b− 1)/10k

for the difference bn+d1/10+...+dk/10
k

b1/10
k − 1 = bn+d1/10+...+dk/10

k+1/10k − bn+d1/10+...+dk/10k ,
which justifies the remarks following Eq. (7).

14. [15] Prove Eq. (12).

We may prove Eq. (12).

Proposition. logb(c
y) = y logb c if c > 0.

Proof. Let c > 0. We must show that logb(c
y) = y logb c. By the laws of exponents:

cy = (blogb c)y = by logb c

Taking logarithms yields:

logb(c
y) = logb(b

y logb c) = y logb c

As we need to show.

Exercises from Section 1.2.2 7

15. [10] Prove or disprove:
logb x/y = logb x− logb y, if x, y > 0.

We are able to prove the proposition.

Proposition. logb x/y = logb x− logb y if x, y > 0.

Proof. Let x, y > 0. We must show that logb x/y = logb x − logb y. But by Eqs. (11)
and (12):

logb x− logb y = logb x+ logb(y
−1)

= logb x+ logb(1/y)

= logb x/y

As we needed to show.

16. [00] How can log10 x be expressed in terms of lnx and ln 10?

By Eq. (14)

log10 x =
lnx

ln 10
.

I 17. [05] What is lg 32? logπ π? ln e? logb 1? logb(−1)?

Since 25 = 32,
lg 32 = 5.

Since π1 = π,
logπ π = 1.

Since e1 = e,
ln e = 1.

By the law of exponents, that b0 = 1, we have

logb 1 = 0;

but since bn ≥ 0 for all positive real numbers b and integers n,

logb(−1)

is undefined.

18. [10] Prove or disprove: log8 x = 1
2 lg x.

We are able to disprove the proposition, by way of counterexample. Consider x = 8. log8 x =
log8 8 = 1 6= 3

2 = 1
2 lg 8 = 1

2 lg x.

I 19. [20] If n is an integer whose decimal representation is 14 digits long, will the value of n fit in a
computer word with a capacity of 47 bits and a sign bit?

If n is an integer whose decimal representation is 14 digits long, then we have that n < 1014, or
equivalently that log10 n < 14. We can convert this to the binary case by converting logarithms.

log10 n < 14 =⇒ n < 1014

=⇒ lnn < ln 1014

Note that ln 1014 = 14 ln 10 < 14 × 3 = 42 < 47, so that lnn < 47. That is, the binary
representation of an integer n whose decimal representation is 14 digits long will fit within 47 bits
(and a sign bit).

Exercises from Section 1.2.2 8

20. [10] Is there any simple relation between log10 2 and log2 10?

log10 2 and log2 10 are reciprocals of each other. That is, log10 2 = ln 2
ln 10 and log2 10 = ln 10

ln 2 .

21. [15] (Logs of logs.) Express logb logb x in terms of ln lnx, ln ln b, and ln b.

We can express logb logb x in terms of ln lnx, ln ln b, and ln b as follows:

logb logb x = logb
lnx

ln b
= logb lnx− logb ln b

=
ln lnx

ln b
− ln ln b

ln b

=
ln lnx− ln ln b

ln b
.

I 22. [20] (R. W. Hamming.) Prove that

lg x ≈ lnx+ log10 x,

with less than 1% error! (Thus a table of natural logarithms and of common logarithms can be used to get
approximate values of binary logarithms as well.)

We are able to prove that lg x ≈ lnx+ log10 x with less than 1% error.

Proposition. lg x ≈ lnx+ log10 x with less than 1% error.

Proof. Let x be an arbitrary positive real number. We must show that lg x ≈ lnx +
log10 x with less than 1% error; that is, we must show that | ln x+log10 x−lg x

lg x | < 0.01.
But:

| lnx+ log10 x− lg x

lg x
| = |

lnx+ ln x
ln 10 −

ln x
ln 2

ln x
ln 2

|

= |
ln 2 lnx+ ln 2

ln 10 lnx− lnx

lnx
|

= |ln 2 +
ln 2

ln 10
− 1|

< 0.01

as we needed to show.

23. [M25] Give a geometric proof that lnxy = lnx+ ln y based on Fig. 6.

We know from the integral calculus that lnx+ ln y = lnxy since by definition lnx =
∫ x
1

1
udu and

lnx+ ln y =

∫ x

1

1

u
du+

∫ y

1

1

v
dv

=

∫ x

1

1

u
du+

∫ y

1

1

xw
d(xw)

=

∫ x

1

1

u
du+

∫ xy

x

1

u
du

=

∫ xy

1

1

u
du

We can see this geometrically by observing first the areas for lnx

Exercises from Section 1.2.2 9

and ln y separately.

We then transform the area for ln y in such a way as to preserve its area, by dividing its height
by x while multiplying its width by x, which yields an equivalent area, but shifted to the right.

These two areas can in fact be arranged continguously, giving us exactly the area for lnxy.

Exercises from Section 1.2.2 10

24. [15] Explain how the method used for calculating logarithms to the base 10 at the end of this section
can be modified to produce logarithms to base 2.

We will show how to calculate log2 x and to express the answer in the binary system, as

log2 x = n+ b1/2 + b2/4 + b3/8 + · · · .

First we shift the decimal point of x to the left or to the right so that we have 1 ≤ x/2n < 2; this
determines the integer part, n. To obtain b1, b2, . . . , we now set x0 = x/2n and, for k ≥ 1,

bk = 0, xk = x2k−1, if x2k−1 < 2;

bk = 1, xk = x2k−1/2, if x2k−1 ≥ 2.

The validity of this procedure follows from the fact that

1 ≤ xk = x2
k

/22
k(n+b1/2+···+bk/2k) < 2,

for k = 0, 1, 2,

25. [22] Suppose that we have a binary computer and a number x, 1 ≤ x < 2. Show that the following
algorithm, which uses only shifting, addition, and subtraction operations proportional to the number of places
of accuracy desired, may be used to calculate an approximation to y = logb x:

L1. [Initialize.] Set y ← 0, z ← x shifted right 1, k ← 1.

L2. [Test for end.] If x = 1, stop.

L3. [Compare.] If x− z < 1, set z ← z shifted right 1, k ← k + 1, and repeat this step.

L4. [Reduce values.] Set x← x− z, z ← x shifted right k, y ← y + logb(2
k/(2k − 1)), and go to L2. �

[Notes: This method is very similar to the method used for division in computer hardware. The idea goes
back in essence to Henry Briggs, who used it (in decimal rather than binary form) to compute logarithm
tables, published in 1624. We need an auxiliary table of the constants logb 2, logb(4/3), logb(8/7), etc., to as
many values as the precision of the computer. The algorithm involves intentional computational errors, as
numbers are shifted to the right, so that eventually x will be reduced to 1 and the algorithm will terminate.
The purpose of this exercise is to explain why it will terminate and why it computes an approximation to
logb x.]

The algorithm relies on the identity

logb(x) = logb(x
2k − 1

2k
2k

2k − 1
) = logb(x−

x

2k
) + logb(

2k

2k − 1
)

and the fact that
z ≈ x

2k

Exercises from Section 1.2.2 11

so that y + logb(x) ≈ logb(x0) for initial x, x0.

To see this is the case, note that after L1, since y = 0 and x = x0, we have y+ logb(x) ≈ logb(x0).
At L2, if x = 1, logb(x) = logb(1) = 0, and so we stop with y+logb(x) = y ≈ logb(x0). Otherwise,
we continue with x > 1. Through L3, we maintain the invariant z ≈ x

2k
, until finally x − z ≥ 1,

x > 1, z ≥ 0, and x > z. After L4, y + logb(x) ≈ logb(x0) is transformed by assignments into

y + logb(
2k

2k−1) + logb(x − x
2k

) ≈ logb(x0), which is equivalent to y + logb(x) ≈ logb(x0), the
same assertion as previously held before L2, with x approaching 1 as z approaches 0, ultimately
terminating when x = 1.

26. [M27] Find a rigorous upper bound on the error made by the algorithm in the previous exercise, based
on the precision used in the arithmetic operations.

We want to determine an upper bound on the error made by the algorithm in the previous
exercise, based on the precision p, the number of fractional digits. That is, the relative error ε
such that ∣∣∣∣y + logb(x)

logb(x0)
− 1

∣∣∣∣ ≤ ε
for initial x, x0.

According to Brigg’s method, we have logb(x) =
∑

1≤k(mk logb(
2k

2k−1)) with 0 ≤ mk < 2. In our
approximation, however, we add at most p terms, and each is truncated by the limited precision
p, giving us the following sum: ∑

1≤k≤p

b2p logb(
2k

2k−1)c
2p

with all mk = 1, the worst possible truncation. And according to the method, the above sum is
an approximation of a factorization, giving us the following logarithm:

logb
∏

1≤k≤p

2k

2k − 1

And so, the upper bound on the error based on the precision p is precisely:

∣∣∣∣y + logb(x)

logb(x0)
− 1

∣∣∣∣ ≤ ε =

∣∣∣∣
∑

1≤k≤p
b2p logb(

2k

2k−1
)c

2p

logb
∏

1≤k≤p
2k

2k−1
− 1

∣∣∣∣
For example, for b = 2 and p = 8, ε < 1%.

I 27. [M25] Consider the method for calculating log10 x discussed in the text. Let x′k denote the computed
approximation to xk, determined as follows: x(1 − δ) ≤ 10nx′0 ≤ x(1 + ε); and in the determination of x′k
by Eqs. (18), the quantity yk is used in place of (x′k−1)2, where (x′k−1)2(1 − δ) ≤ yk ≤ (x′k−1)2(1 + ε) and
1 ≤ yk < 100. Here δ and ε are small constants that reflect the upper and lower errors due to rounding or
trunctation. If log′ x denotes the result of the calculations, show that after k steps we have

log10 x+ 2 log10(1− δ)− 1/2k < log′ x ≤ log10 x+ 2 log10(1 + ε).

We may prove the bounds of the approximation.

Proposition. log10 x+ 2 log10(1− δ)− 1/2k < log′ x ≤ log10 x+ 2 log10(1 + ε) after k
steps.

Proof. We must show that

log10 x+ 2 log10(1− δ)− 1/2k < log′ x ≤ log10 x+ 2 log10(1 + ε)

holds after k steps. It is sufficient to show that

x2
k

(1− δ)2
k+1−1 ≤ 102

k(n+
∑

1≤j≤k(bj/2
j))x′k ≤ x2

k

(1 + ε)2
k+1−1

Exercises from Section 1.2.2 12

since, by taking logarithms and given that log′ x = n+
∑

1≤j≤k(bj/2
j):

2k log10 x+ 2k log10(1− δ)(2− 1/2k) ≤ 2k log′ x ≤ 2k log10 x+ 2k log10(1 + ε)(2− 1/2k)

=⇒ log10 x+ log10(1− δ)(2− 1/2k) ≤ log′ x ≤ log10 x+ log10(1 + ε)(2− 1/2k)

=⇒ log10 x+ 2 log10(1− δ) ≤ log′ x ≤ log10 x+ 2 log10(1 + ε)

It also given that
x(1− δ) ≤ 10nx′0 ≤ x(1 + ε)

and that
x′k+1 = 10bk+1x′2k .

First, we must show that the relation holds for k = 0. But this case is given, as:

x2
0

(1− δ)2
0+1−1 ≤ 102

0(n+
∑

1≤j≤0(bj/2
j))x′0 ≤ x2

0

(1 + ε)2
k+1−1

Then, assuming the relation holds for arbitrary k ≥ 0:

x2
k

(1− δ)2
k+1−1 ≤ 102

k(n+
∑

1≤j≤k(bj/2
j))x′k ≤ x2

k

(1 + ε)2
k+1−1

we must show it holds for k + 1:

x2
k+1

(1− δ)2
k+2−1 ≤ 102

k+1(n+
∑

1≤j≤k+1(bj/2
j))x′k+1 ≤ x2

k+1

(1 + ε)2
k+2−1

We may take squares of the induction hypothesis:

(x2
k

(1− δ)2
k+1−1)2 ≤ (102

k(n+
∑

1≤j≤k(bj/2
j))x′k)2 ≤ (x2

k

(1 + ε)2
k+1−1)2

and evalate each part in turn.

For the lower bound, since (1− δ) < 1, we have:

(x2
k

(1− δ)2
k+1−1)2 ≥ (x2

k

(1− δ)2
k+1−1)2(1− δ)

= x2
k2(1− δ)2(2

k+1−1)+1

= x2
k+1

(1− δ)2
k+2−1

For the upper bound, since (1 + δ) > 1, we have:

(x2
k

(1 + ε)2
k+1−1)2 ≤ (x2

k

(1 + ε)2
k+1−1)2(1 + ε)

= x2
k2(1 + ε)2(2

k+1−1)+1

= x2
k+1

(1 + ε)2
k+2−1

And for the middle approximation, since x′k+1 = 10bk+1x′2k , we have:

(102
k(n+

∑
1≤j≤k(bj/2

j))x′k)2 = 102(2
k)(n+

∑
1≤j≤k(bj/2

j))10bk+1x′2k /10bk+1

= 102
k+1(n+

∑
1≤j≤k(bj/2

j))+2k+1(bk+1/2
k+1)x′k+1

= 102
k+1(n+

∑
1≤j≤k(bj/2

j)+bk+1/2
k+1)x′k+1

= 102
k+1(n+

∑
1≤j≤k+1(bj/2

j))x′k+1

That is

x2
k+1

(1− δ)2
k+2−1 ≤ 102

k+1(n+
∑

1≤j≤k+1(bj/2
j))x′k+1 ≤ x2

k+1

(1 + ε)2
k+2−1

as we needed to show.

Exercises from Section 1.2.2 13

28. [HM30] (R. Feynman.) Develop a method for computing bx when 0 ≤ x < 1, using only shifting,
addition, and subtraction (similar to the algorithm in exercise 25), and analyze its accuracy.

The method below computes an approximation to bx for 0 ≤ x < 1, using only shifting, addition,
and subtraction, similar to the algorithm in exercise 25 in that it uses the same auxiliary table
of constants.

Algorithm M (Digit-by-digit exponentiation.). Given a number x, 0 ≤ x < 1, calculate an
approximation y = bx given machine precision p.

M1. [Initialize.] Set x← 1− x, y ← b, k ← 1.

M2. [Test for end.] If x ≤ 0, stop.

M3. [Compare.] If x− logb(2
k/(2k − 1)) < 0 and k < p, k ← k + 1, and repeat this step.

M4. [Reduce values.] Set x ← x − logb(2
k/(2k − 1)), y ← y − (y shifted right k), and go to

M2. (Note that the operation on y is equivalent to y ← y × (2k − 1)/2k.) �

While decreasing x by logb(2
k/(2k − 1)) = − logb((2

k − 1)/2k), we increase y by y(2k − 1)/2k, so
that yb−x remains approximately constant.

The upper bound on the error made by the algorithm, based on the precision p, the number of
fractional digits, can be represented by the relative error ε such that∣∣∣∣ybxbx0

− 1

∣∣∣∣ ≤ ε
for initial x, x0.

According to the digit-by-digit method, we have bx =
∏

1≤k(2k

2k−1)mk with 0 ≤ mk < 2. In our
approximation, however, we multiply at most p factors, and each is truncated by the limited
precision p, giving us the following product:

∏
1≤k≤p

b2p 2k

2k−1c
2p

with all mk = 1, the worst possible truncation. And according to the method, the above product
is an approximation of a factorization, giving us the following logarithm:

b
∑

1≤k≤p logb
2k

2k−1

And so, the upper bound on the error based on the precision p is precisely:

∣∣∣∣ybxbx0
− 1

∣∣∣∣ ≤ ε =

∣∣∣∣
∏

1≤k≤p
b2p 2k

2k−1
c

2p

b
∑

1≤k≤p logb
2k

2k−1

− 1

∣∣∣∣
For example, for b = 2 and p = 8, ε < 1%.

Note: Similar algorithms can be given for trigonometric functions; see J. E. Meggitt, IBM J.
Res. and Dev. 6 (1962), 210-226; 7 (1963), 237-245. See also T. C. Chen, IBM J. Res. and Dev.
16 (1972), 380-388; V. S. Linsky, Vychisl. Mat. 2 (1957), 90-119; D. E. Knuth, Metafont: The
Program (Reading, Mass.: Addison-Wesley, 1986), §120-§147.

29. [HM20] Let x be a real number greater than 1. (a) For what real number b > 1 is b logb x a minimum?
(b) For what integer b > 1 is it a minimum? (c) For what integer b > 1 is (b+ 1) logb x a minimum?

a. Let x and b be real numbers greater than 1. b = e is a minimum for b logb x. The minimum
of b logb x is the minimum of b

ln b , and d
db

b
ln b = ln b−1

(ln b)2 = 0 if and only if ln b = 1 and b = e.

Exercises from Section 1.2.2 14

b. Let x be a real number and b be an integer, both greater than 1. b = dee = 3 is a minimum
for b logb x, since ∣∣∣∣ deelndee

− e
∣∣∣∣ < ∣∣∣∣ beclnbec

− e
∣∣∣∣.

c. Let x be a real number and b be an integer, both greater than 1. b = dαe = 4 for α =

eW (1
e)+1, the Lambert W -function or product logarithm, is the minimum of (b + 1) logb x.

The minimum of (b+ 1) logb x is the minimum of b+1
ln b , and d

db
b+1
ln b = b ln b− b− 1 = 0 if and

only if b = eW (1
e)+1 = α, and ∣∣∣∣dαe+ 1

lndαe
− α

∣∣∣∣ < ∣∣∣∣bαc+ 1

lnbαc
− α

∣∣∣∣.
30. [12] Simplify the expression (lnn)lnn/ ln lnn, assuming that n > 1 and n 6= e.

We may simplify the expression, assuming n > 1 and n 6= e by noting that

lnn = eln lnn

= (nlogn e)ln lnn

= (n
1

lnn)ln lnn

= n
ln lnn
lnn

or equivalently that

n = (lnn)
lnn

ln lnn .

