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1. [00 ] What are b1.1c, b−1.1c, d−1.1e, b0.99999c, and blg 35c?

We have:

b1.1c = 1 1 ≤ 1.1 < 2

b−1.1c = −2 − 2 ≤ −1.1 < −1

d−1.1e = −1 − 2 < −1.1 ≤ −1

b0.99999c = 0 0 ≤ 0.99999 < 1

blg 35c = 5 5 = lg 32 ≤ lg 35 < lg 64 = 6

I 2. [01 ] What is dbxce?

dbxce = bxc since bxc is an integer and bxc − 1 < bxc ≤ bxc.

3. [M10 ] Let n be an integer, and let x be a real number. Prove that a) bxc < n if and only if x < n; b)
n ≤ bxc if and only if n ≤ x; c) dxe ≤ n if and only if x ≤ n; d) n < dxe if and only if n < x; e) bxc = n if
and only if x− 1 < n ≤ x, and if and only if n ≤ x < n+ 1; f) dxe = n if and only if x ≤ n < x+ 1, and if
and only if n− 1 < x ≤ n.

[These formulas are the most important tools for proving facts about bxc and dxe.]

We may prove the various propositions.

Proposition (A). bxc < n if and only if x < n for all integers n, real numbers x.

Proof. Let n be an integer and x a real number. We must show that bxc < n if and
only if x < n.

If bxc < n:

bxc ≤ x < bxc+ 1

bxc < n =⇒ bxc+ 1 ≤ n
∴ x < n

If x < n:

bxc ≤ x < bxc+ 1

x < n

∴ bxc < n

Therefore, bxc < n if and only if x < n.

Proposition (B). n ≤ bxc if and only if n ≤ x for all integers n, real numbers x.
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Proof. Let n be an integer and x a real number. We must show that n ≤ bxc if and
only if n ≤ x.

If n ≤ bxc:

bxc ≤ x < bxc+ 1

n ≤ bxc
∴ n ≤ x

If n ≤ x:

bxc ≤ x < bxc+ 1 =⇒ bxc − 1 ≤ x− 1 < bxc
n ≤ x

∴ n < bxc+ 1 =⇒ n ≤ bxc

Therefore, n ≤ bxc if and only if n ≤ x.

Proposition (C). dxe ≤ n if and only if x ≤ n for all integers n, real numbers x.

Proof. Let n be an integer and x a real number. We must show that dxe ≤ n if and
only if x ≤ n.

If dxe ≤ n:

dxe − 1 < x ≤ dxe
dxe ≤ n

∴ x ≤ n

If x ≤ n:

dxe − 1 < x ≤ dxe
x ≤ n

∴ dxe − 1 < n =⇒ dxe ≤ n

Therefore, dxe ≤ n if and only if x ≤ n.

Proposition (D). n < dxe if and only if n < x for all integers n, real numbers x.

Proof. Let n be an integer and x a real number. We must show that n < dxe if and
only if n < x.

If n < dxe:

dxe − 1 < x ≤ dxe
n < dxe =⇒ n ≤ dxe − 1

∴ n < x
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If n < x:

dxe − 1 < x ≤ dxe
n < x

∴ n < dxe

Therefore, n < dxe if and only if n < x.

Proposition (E). bxc = n if and only if x−1 < n ≤ x, and if and only if n ≤ x < n+1
for all integers n, real numbers x.

Proof. Let n be an integer and x a real number. We must show that bxc = n if and
only if x− 1 < n ≤ x, and if and only if n ≤ x < n+ 1.

If bxc = n:

bxc = n =⇒ n ≤ bxc =⇒ n ≤ x from (b)

bxc = n =⇒ bxc ≤ n =⇒ bxc < n+ 1 =⇒ x < n+ 1 ≡ x− 1 < n from (a)

∴ x− 1 < n ≤ x ∧ n ≤ x < n+ 1

If x− 1 < n ≤ x:

x− 1 < n ≤ x =⇒ n ≤ bxc from (b)

x− 1 < n ≤ x =⇒ x < n+ 1 =⇒ bxc < n+ 1 =⇒ bxc ≤ n from (a)

∴ n ≤ bxc ∧ bxc ≤ n =⇒ bxc = n

If n ≤ x < n+ 1:

n ≤ x < n+ 1 =⇒ n ≤ bxc from (b)

n ≤ x < n+ 1 =⇒ x < n+ 1 =⇒ bxc < n+ 1 =⇒ bxc ≤ n from (a)

∴ n ≤ bxc ∧ bxc ≤ n =⇒ bxc = n

Therefore, bxc = n if and only if x− 1 < n ≤ x, and if and only if n ≤ x < n+ 1.

Proposition (F). dxe = n if and only if x ≤ n < x+1, and if and only if n−1 < x ≤ n
for all integers n, real numbers x.

Proof. Let n be an integer and x a real number. We must show that dxe = n if and
only if x ≤ n < x+ 1, and if and only if n− 1 < x ≤ n.

If dxe = n:

dxe = n =⇒ dxe ≤ n =⇒ x ≤ n from (c)

dxe = n =⇒ n ≤ dxe =⇒ n− 1 < dxe =⇒ n− 1 < x ≡ n < x+ 1 from (d)

∴ x ≤ n < x+ 1 ∧ n− 1 < x ≤ n
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If x ≤ n < x+ 1:

x ≤ n < x+ 1 =⇒ x ≤ n =⇒ dxe ≤ n from (c)

x ≤ n < x+ 1 =⇒ n− 1 < x =⇒ n− 1 < dxe =⇒ n ≤ dxe from (d)

∴ dxe ≤ n ∧ n ≤ dxe =⇒ dxe = n

If n− 1 < x ≤ n:

n− 1 < x ≤ n =⇒ x ≤ n =⇒ dxe ≤ n from (c)

n− 1 < x ≤ n =⇒ n− 1 < x =⇒ n− 1 < dxe =⇒ n ≤ dxe from (d)

∴ dxe ≤ n ∧ n ≤ dxe =⇒ dxe = n

Therefore, dxe = n if and only if x ≤ n < x+ 1, and if and only if n− 1 < x ≤ n.

I 4. [M10 ] Using the previous exercise, prove that b−xc = −dxe.

Proposition. b−xc = −dxe for any real number x.

Proof. Let x be an arbitrary real number. We must show that b−xc = −dxe.

Given

dxe − 1 < x ≤ dxe =⇒ −dxe+ 1 > −x ≥ −dxe
=⇒ −dxe ≤ −x < −dxe+ 1

and

dxe − 1 < x ≤ dxe =⇒ x ≤ dxe < x+ 1

=⇒ −x ≥ −dxe > −x− 1

=⇒ −x− 1 < −dxe ≤ −x,

by the previous exercise, we have

b−xc = −dxe

as we needed to show.

5. [16 ] Given that x is a positive real number, state a simple formula that expresses x rounded to the
nearest integer. The desired rounding rule is to produce bxc when x mod 1 < 1

2 , and to produce dxe when
x mod 1 ≥ 1

2 . Your answer should be a single formula that covers both cases. Discuss the rounding that
would be obtained by your formula when x is negative.

A simple formula to express x rounded to the nearest integer could be given as

round(x) =

⌊
x+

1

2

⌋
.
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Note that it satisfies the requirements, as

round(x) =

⌊
x+

1

2

⌋
=

⌊
x+

1

2
+ bxc − bxc

⌋
=

⌊
bxc+ x− bxc+

1

2

⌋
=

⌊
bxc+ x mod 1 +

1

2

⌋
= bxc+

⌊
x mod 1 +

1

2

⌋
=

{
bxc+ 0 = bxc if x mod 1 < 1

2

bxc+ 1 = dxe if x mod 1 ≥ 1
2 .

(Note that x mod 1 ≥ 1
2 implies x is not an integer, otherwise x mod 1 = 0.)

For negative values of x, we find that (in general), round(−x) = − round(x) except when x mod
1 = 1

2 , in which case x is rounded away from zero if positive, towards zero if negative.

I 6. [20 ] Which of the following equations are true for all positive real numbers x? (a)
⌊√
bxc
⌋

= b
√
xc;

(b)
⌈√
dxe
⌉

= d
√
xe; (c)

⌈√
bxc
⌉

= d
√
xe.

Some, but not all, of the equations are true.

(a)
⌊√
bxc
⌋

= b
√
xc is true, since for an arbitrary integer n,⌊√

x
⌋

= n =⇒ n ≤
√
x < n+ 1

=⇒ n2 ≤ x < (n+ 1)2

=⇒ n2 ≤ bxc < (n+ 1)2

=⇒ n ≤
√
bxc < n+ 1

=⇒
⌊√
bxc
⌋

= n.

(b)
⌈√
dxe
⌉

= d
√
xe is true, since for an arbitrary integer n,⌈√

x
⌉

= n =⇒ n <
√
x ≤ n+ 1

=⇒ n2 < x ≤ (n+ 1)2

=⇒ n2 < dxe ≤ (n+ 1)2

=⇒ n ≤
√
dxe < n+ 1

=⇒
⌈√
dxe
⌉

= n.

(c)
⌈√
bxc
⌉

= d
√
xe is not true, as can be demonstrated by counterexample. Consider x = 9

4 .

Then ⌈√⌊
9

4

⌋⌉
=
⌈√

1
⌉

= d1e = 1

but ⌈√
9

4

⌉
=

⌈
3

2

⌉
= 2.
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7. [M15 ] Show that bxc+ byc ≤ bx+ yc and that equality holds if and only if x mod 1 + y mod 1 < 1. Does
a smiliar formula hold for ceilings?

We may prove the proposition.

Proposition. bxc+byc ≤ bx+yc and equality holds if and only if x mod 1+y mod 1 <
1.

Proof. Let x and y be arbitrary real numbers. We must show that

bxc+ byc ≤ bx+ yc

and that equality holds if and only if x mod 1 + y mod 1 < 1.

But

bx+ yc = bbxc+ x mod 1 + byc+ y mod 1c
= bxc+ byc+ bx mod 1 + y mod 1c

=

{
bxc+ byc if x mod 1 + y mod 1 < 1

bxc+ byc+ 1 otherwise.

That is, bxc+ byc ≤ bx+ yc and equality holds if and only if x mod 1 + y mod 1 < 1,
as we needed to show.

A similar formula holds for ceilings. In particular

dx+ ye ≤ dxe+ dye

with equality if and only if (−x) mod 1 + (−y) mod 1 < 1 since

dx+ ye = −b−x− yc
= −bb−xc+ (−x) mod 1 + b−yc+ (−y) mod 1c
= −b−xc − b−yc − b(−x) mod 1 + (−y) mod 1c

=

{
dxe+ dye if (−x) mod 1 + (−y) mod 1 < 1

dxe+ dye − 1 otherwise.

Note that if x and y are not integers,

(−x) mod 1 + (−y) mod 1 < 1 ⇐⇒ −x− b−xc+−y − b−yc < 1

⇐⇒ −x+ dxe+−y + dye < 1

⇐⇒ −x+ bxc+ 1 +−y + byc+ 1 < 1

⇐⇒ x+−bxc − 1 + y − byc − 1 > −1

⇐⇒ x mod 1 + y mod 1− 2 > −1

⇐⇒ x mod 1 + y mod 1 > 1.

8. [00 ] What are 100 mod 3, 100 mod 7, −100 mod 7, −100 mod 0?

We have:

100 mod 3 = 1 since 1 = 100− 33(3)

100 mod 7 = 2 since 2 = 100− 14(7)

−100 mod 7 = 5 since 5 = −100− 7b−100/7c = −100 + 7(15)

−100 mod 0 = −100.
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9. [05 ] What are 5 mod −3, 18 mod −3, −2 mod −3?

We have:

5 mod −3 = −1 since −1 = 5− (−3)b−5/3c = 5− 3(2)

18 mod −3 = 0 since 0 = 18− (−3)b−18/3c = 18− 3(6)

−2 mod −3 = −2 since −2 = −2− (−3)b2/3c = −2 + 3(0).

I 10. [10 ] What are 1.1 mod 1, 0.11 mod .1, 0.11 mod −.1?

We have:

1.1 mod 1 = 0.1 since 0.1 = 1.1− 1b1.1/1c
0.11 mod 0.1 = 0.01 since 0.01 = 0.11− 0.1b0.11/0.1c

0.11 mod −0.1 = −0.09 since 0.09 = 0.11 + 0.1b−0.11/0.1c = 0.11− 0.1(2).

11. [00 ] What does “x ≡ y (modulo 0)” mean by our conventions?

“x ≡ y (mod 0)” means x = y, since x ≡ y (mod 0) is equivalent to asserting x mod 0 = x =
y = y mod 0.

12. [00 ] What integers are relatively prime to 1?

All integers are relatively prime to 1 since for any integer n, gcd(n, 1) = 1.

13. [M00 ] By convention, we say that the greatest common divisor of 0 and n is |n|. What integers are
relatively prime to 0?

Given that gcd(0, n) = |n| for any integer n, then only −1 and 1 are relatively prime to 0.

I 14. [12 ] If x mod 3 = 2 and x mod 5 = 3, what is x mod 15?

We have:

x ≡ 2 (mod 3) ∧ x ≡ 3 (mod 5)

⇐⇒ 5x ≡ 10 (mod 15) ∧ 3x ≡ 9 (mod 15) by Law C

⇐⇒ (5− 3)x ≡ (10− 9) (mod 15) by Law A

⇐⇒ (3− 2)x ≡ (9− 1) (mod 15) by Law A

⇐⇒ x ≡ 8 (mod 15).

15. [10 ] Prove that z(x mod y) = (zx) mod (zy). [Law C is an immediate consequence of this distributive
law.]

Proposition. z(x mod y) = (zx) mod (zy), z 6= 0.

Proof. Let x, y, and z be arbitrary real numbers, z 6= 0. We must show that

z(x mod y) = (zx) mod (zy).

But

x mod y = x− y
⌊
x

y

⌋
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if and only if

z(x mod y) = z

(
x− y

⌊
x

y

⌋)
= zx− zy

⌊
x

y

⌋
= zx− zy

⌊
zx

zy

⌋
= (zx) mod (zy)

as we needed to show.

16. [M10 ] Assume that y > 0. Show that if (x−z)/y is an integer and if 0 ≤ z < y, then z = x mod y.

Proposition. if y|(x− z) and 0 ≤ z < y, then z = x mod y.

Proof. Let x, y, and z be arbitrary integers such that y|(x − z) and 0 ≤ z < y. We
must show that z = x mod y.

But

x mod y = x− y
⌊
x

y

⌋
= x− y

⌊
x+ z − z

y

⌋
= x− y

⌊
x− z
y

+
z

y

⌋
= x− y

(
x− z
y

+

⌊
z

y

⌋)
since y|(x− z)

= x− y
(
x− z
y

+ 0

)
since 0 ≤ z < y

= x− yx− z
y

= x− x+ z

= z

as we needed to show.

17. [M15 ] Prove Law A directly from the definition of congruence, and also prove half of Law D: If a ≡ b
(modulo rs), then a ≡ b (modulo r) and a ≡ b (modulo s). (Here r and s are arbitrary integers.)

We may prove Law A.

Proposition. If a ≡ b and x ≡ y, then a± x ≡ b± y and ax ≡ by (mod m).

Proof. Let a, b, x, y, and m be arbitrary integers so that a ≡ b and x ≡ y. We must
show that a± x ≡ b± y and ax ≡ by (mod m).

For some integer r and s, we have

a = b+mr ∧ x = y +ms.

In the case of addition, a+ x ≡ b+ y (mod m) since

a+ x = b+mr + y +ms

= b+ y +m(r + s)



Exercises from Section 1.2.4 9

for some integer r + s.

Similarly, in the case of subtraction, a− x ≡ b− y (mod m) since

a− x = b+mr − y −ms
= b− y +m(r − s)

for some integer r − s.

In the case of multiplication, ax ≡ by (mod m) since

ax = (b+mr)(y −ms)
= by + ymr − bms−m2rs

= by +m(yr − bs−mrs)

for some integer yr − bs−mrs.

Therefore, if a ≡ b and x ≡ y, then a± x ≡ b± y and ax ≡ by (mod m) as we needed
to show.

We may also prove half of Law D, which doesn’t require the assumption that r ⊥ s.

Proposition. If a ≡ b (mod rs), then a ≡ b (mod r) and a ≡ b (mod s).

Proof. Let a, b, r, and s be arbitrary integers so that a ≡ b (mod rs). We must show
that a ≡ b (mod r) and a ≡ b (mod s).

But
a = b+ rst

for some integer t, in which case we have that a = b + ru and a = b + sv for integers
u = st and v = rt.

Therefore, if a ≡ b (mod rs), then a ≡ b (mod r) and a ≡ b (mod s).

18. [M15 ] Using Law B, prove the other half of Law D: If a ≡ b (modulo r) and a ≡ b (modulo s), then
a ≡ b (modulo rs), provided that r ⊥ s.

Proposition. If a ≡ b (mod r) and a ≡ b (mod s), then a ≡ b (mod rs), provided
r ⊥ s.

Proof. Let a, b, r, and s be arbitrary integers so that a ≡ b (mod r) and a ≡ b (mod s),
with r ⊥ s. We must show that a ≡ b (mod rs).

But
a ≡ b (mod r),

or equivalently, a = b+ ru for some integer u. We also necessarily have that ru = sv =
0 + sv for some integer v, or equivalently, that

ru ≡ 0 (mod s)

since

a = b+ ru ∧ a = b+ sv ⇐⇒ a− a = (b+ ru)− (b− sv)

⇐⇒ 0 = ru− sv
⇐⇒ ru = sv.
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By Law B, since r ⊥ s,
u ≡ 0 (mod s),

or equivalently, u = 0 + sv′ = sv′ for some integer v′. Substituting sv′ for u gives us
that a = b+ rsv′, or equivalently, that

a ≡ b (mod rs).

Therefore, if a ≡ b (mod r) and a ≡ b (mod s), then a ≡ b (mod rs), provided r ⊥
s.

I 19. [M10 ] (Law of inverses.) If n ⊥ m, there is an integer n′ such that nn′ ≡ 1 (modulo m). Prove this,
using the extension of Euclid’s algorithm (Algorithm 1.2.1E).

Proposition. If n ⊥ m, there is an integer n′ such that nn′ ≡ 1 (mod m).

Proof. Let n and m be arbitrary integers such that n ⊥ m. We must show that there
exists an integer n′ such that nn′ ≡ 1 (mod m).

Let d be the greatest common divisor of m and n as computed by Algorithm 1.2.1E.
Then there exists two other integers m′ and n′ such that

m′m+ n′n = d.

Since n ⊥ m, we must have that d = 1, and so, nn′ = 1 +m(−m′), or equivalently,

nn′ ≡ 1 (mod m)

as we needed to show.

20. [M15 ] Use the law of inverses and Law A to prove Law B.

Proposition. If ax ≡ by and a ≡ b, and if a ⊥ m, then x ≡ y (mod m).

Proof. Let a, b, x, y, and m be arbitrary integers such that ax ≡ by, a ≡ b, and a ⊥ m
(mod m). We must show that x ≡ y (mod m).

Since a ⊥ m, by the law of inverses we know there exists an integer a′ such that

aa′ ≡ 1 (mod m).

Since a ≡ b, from Law A
aa′ ≡ ba′ ≡ 1 (mod m).

Finally, since ax ≡ by (mod m), by Law A again, multiplying the congrunce by a′

yields

a′ax ≡ a′by =⇒ x ≡ y (mod m)

as we needed to show.

21. [M22 ] (Fundamental theorem of arithmetic.) Use Law B and exercise 1.2.1-5 to prove that every
integer n > 1 has a unique representation as a product of primes (except for the order of the factors).
In other words, show that there is exactly one way to write n = p1p2 . . . pk where each pj is prime and
p1 ≤ p2 ≤ · · · ≤ pk.

Proposition. Every integer n > 1 has a unique representation as a product of primes
(except for the order of the factors).
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Proof. Let n be an arbitrary integer such that n > 1. We must show that n has a
unique representation as a product of primes (except for the order of the factors).

By exercise 1.2.1-5, we have that n =
∏

1≤i≤r pi for some arbitrary set of primes pi,
1 ≤ i ≤ r. We must show that if n =

∏
1≤j≤s qj for some other arbitrary set of primes

qj , 1 ≤ j ≤ s, that in fact, r = s and pi = qσ(i) for some permutation σ(i) = j.

Let us assume, however, they are not. That is, let us assume that for all 1 ≤ j ≤ s,
qj 6= p1. Since

∏
1≤i≤r pi =

∏
1≤j≤s qj , we have that∏

1≤i≤r

pi ≡ 0 (mod p1) ⇐⇒
∏

1≤j≤s

qj ≡ 0 (mod p1).

As all pi and qj are each a set of primes and qj 6= p1, we have that qj ⊥ p1, allowing us
to apply Law B (since qj ≡ qj (mod p1)) successively until we obtain

1 ≡ 0 (mod p1).

But this requires p1 = 1, and since p1 is a prime, a condradiction. Hence, there exists
a qj′ such that qj′ = p1. We may factor this prime out of our equation as

n/p1 =
∏

2≤i≤r

pi =
∏

1≤j≤s
j 6=j′

qj =

∏
1≤j≤s qj

p1
.

If n was prime, then clearly n = p1 and we have proven there is a unique representation
for this trivial case r = s = 1. Otherwise, we may prove by induction on k = r = s
that this is so. That is, if we assume that

nk =
∏

1≤i≤k

pi =
∏

1≤i≤k

qσ(i)

is a unique factorization, we must show that

nk+1 =
∏

1≤i≤k+1

pi =
∏

1≤j≤s′
qj =

∏
1≤i≤k+1

qσ′(i)

is too for some integer s′ = k + 1. But we can make a similar proof by contradiction,
assuming that for all 1 ≤ j ≤ s, qj 6= pk+1. Since

∏
1≤i≤r pi =

∏
1≤j≤s qj , we have that∏

1≤i≤r

pi ≡ 0 (mod pk+1) ⇐⇒
∏

1≤j≤s

qj ≡ 0 (mod pk+1).

As all pi and qj are each a set of primes and qj 6= pk+1, we have that qj ⊥ pk+1, allowing
us to apply Law B (since qj ≡ qj (mod pk+1)) successively until we obtain

1 ≡ 0 (mod pk+1).

But this requires pk+1 = 1, and since pk+1 is a prime, a condradiction. Hence, there
exists a qj′ such that qj′ = pk+1. Then

nk+1 =
∏

1≤i≤k+1

pi

= pk+1

∏
1≤i≤k

pi

= pk+1

∏
1≤i≤k

qσ(i)

= qj′
∏

1≤i≤k

qσ(i)

=
∏

1≤i≤k+1

qσ′(i).
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for

σ′(i) =

{
σ(i) if 1 ≤ i ≤ k
j′ if i = k + 1.

We necessarily have s′ = k+ 1, as both pk+1 and q′j are primes and may not be further
factored (leading to the inequalities s′ < k+ 1 and s′ > k+ 1, respectively, if they were
not). Hence the result as we needed to show.

I 22. [M10 ] Give an example to show that Law B is not always true if a is not relatively prime to m.

An example to show that Law B is not always true if a is not relatively prime to m is for a = 2,
b = 0, x = 1, y = 0, and m = 2 so that a = 2 6⊥ 2 = m. Then

2(1) ≡ 0(0) (mod 2),

2 ≡ 0 (mod 2)

but
1 6≡ 0 (mod 2).

23. [M10 ] Give an example to show that Law D is not always true if r is not relatively prime to s.

An example to show that Law D is not always true if r is not relatively prime to s is for a = r =
s = 2 and b = 0 so that r = 2 6⊥ 2 = s. Then

2 ≡ 0 (mod 2),

2 ≡ 0 (mod 2)

but
2 6≡ 0 (mod 2(2)).

I 24. [M20 ] To what extent can Laws A, B, C, and D be generalized to apply to arbitrary real numbers
instead of integers?

We have that Law A for addition and subtraction hold, as well as Law C.

We may prove Law A.

Proposition. If a ≡ b and x ≡ y, then a± x ≡ b± y and ax ≡ by (mod m).

Proof. Let a, b, x, y, and m be arbitrary real numbers so that a ≡ b and x ≡ y. We
must show that a± x ≡ b± y.

For some integer r and s, we have

a = b+mr ∧ x = y +ms.

In the case of addition, a+ x ≡ b+ y (mod m) since

a+ x = b+mr + y +ms

= b+ y +m(r + s)

for some integer r + s.

Similarly, in the case of subtraction, a− x ≡ b− y (mod m) since

a− x = b+mr − y −ms
= b− y +m(r − s)

for some integer r − s.

Therefore, if a ≡ b and x ≡ y, then a± x ≡ b± y and ax ≡ by (mod m) as we needed
to show.
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To see why Law A for multiplication does not hold for the real numbers, consider as an example
a = 2

3 , b = − 1
3 , x = 3

5 , y = − 2
5 , and m = 1. Then

2

3
≡ −1

3
(mod 1),

3

5
≡ −2

5
(mod 1)

but
2

5
6≡ 2

15
(mod 1).

To see why Law B does not hold for the real numbers, consider as an example a = 2
3 , b = − 1

3 ,
x = 3

5 , y = 9
5 , and m = 1. Then

6

15
≡ − 9

15
(mod 1),

2

3
≡ −1

3
(mod 1)

but
3

5
6≡ 9

5
(mod 1).

(Note that even the more general relation x ≡ y (mod m
gcd(a,m) ) ⇐⇒

3
5 ≡

9
5 (mod 3) doesn’t

hold, assuming Thomae’s function so that gcd( 2
3 , 1) = 1

3 .)

We may prove Law C.

Proposition. a ≡ b (mod m) if and only if an ≡ bn (mod mn), when n 6= 0.

Proof. Let a, b, m, and n be arbitrary real numbers such that n 6= 0. We must show
that a ≡ b (mod m) if and only if an ≡ bn (mod mn).

By exercise 15, we have that

a ≡ b (mod m) ⇐⇒ a mod m = b mod m

⇐⇒ n(a mod m) = n(b mod m)

⇐⇒ an mod mn = bn mod mn

⇐⇒ an ≡ bn (mod mn)

as we needed to show.

To see why Law D does not hold for the real numbers, consider as an example a = 1
2 , b = −1,

and r = s = 3
2 . Then

1

2
≡ −1 (mod

3

2
),

1

2
≡ −1 (mod

3

2
)

but
1

2
6≡ −1 (mod

9

4
).

25. [M02 ] Show that, according to Theorem F, ap−1 mod p = [a is not a multiple of p], whenever p is a
prime number.

Proposition. ap−1 mod p = [a ⊥ p] whenever p is a prime number.
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Proof. Let a and p be arbitrary integers such that p is prime. We must show that
ap−1 mod p = [a ⊥ p].

By Theorem F, we have that ap ≡ a (mod p). In the case a ⊥ p, we may apply Law B
to deduce that ap−1 ≡ 1 (mod p), or equivalently, that

ap−1 mod p = 1 mod p = 1 = [a ⊥ p]

since p > 1.

In the case that a 6⊥ p, a | p, and since p > 1, we have that

ap−1 mod p = 0 = 0 mod p = [a ⊥ p].

Therefore, in either case,
ap−1 mod p = [a ⊥ p]

as we needed to show.

26. [M15 ] Let p be an odd prime number, let a be any integer, and let b = a(p−1)/2. Show that b mod p is
either 0 or 1 or p− 1. [Hint: Consider (b+ 1)(b− 1).]

Proposition. a(p−1)/2 mod p is either 0, 1, or p− 1.

Proof. Let a and p be arbitrary integers such that p is prime and let b = a(p−1)/2. We
must show that b mod p is either 0, 1, or p− 1.
If b 6⊥ p, then clearly b mod p = 0. Otherwise, we need only examine the case b ⊥ p.
By Theorem F, we have that ap ≡ a (mod p). We may apply Law B to deduce that
ap−1 ≡ 1 (mod p), or equivalently by Law A, that

ap−1 − 1 ≡ 0 (mod p).

But

ap−1 − 1 = b2 − 1

= (b+ 1)(b− 1)

so that
(b+ 1)(b− 1) ≡ 0 (mod p).

By canceling out each factor, we obtain

b+ 1 ≡ 0 (mod p) ⇐⇒ b ≡ −1 (mod p)

⇐⇒ b ≡ p− 1 (mod p)

and

b− 1 ≡ 0 (mod p) ⇐⇒ b ≡ 1 (mod p).

Therefore, b mod p is either 0, 1, or p− 1 as we needed to show.

27. [M15 ] Given that n is a positive integer, let ϕ(n) be the number of values among {0, 1, . . . , n− 1} that
are relatively prime to n. Thus ϕ(1) = 1, ϕ(2) = 1, ϕ(3) = 2, ϕ(4) = 2, etc. Show that ϕ(p) = p− 1 if p is a
prime number; and evaluate ϕ(pe) when e is a positive integer.

We may prove a propery of Euler’s totient function, defined as

ϕ(n) = |{k : 1 ≤ k ≤ n ∧ k ⊥ n}|.



Exercises from Section 1.2.4 15

Proposition. ϕ(p) = p− 1 if p is a prime number.

Proof. Let p be an arbitrary prime number. We must show that ϕ(p) = p− 1.

Since p is a prime number, its only divisors are 1 and p. That is, k ⊥ p for 1 ≤ k < p
but not for k = p. And so

ϕ(p) = |{k : 1 ≤ k ≤ p ∧ k ⊥ p}|
= |{k : 1 ≤ k ≤ p− 1 ∧ k ⊥ p}|+ |{k : k = p ∧ k ⊥ p}|
= (p− 1) + (0)

= p− 1

as we needed to show.

We may evaluate ϕ(pe) when e is a positive integer by noting there are pe numbers in total,
and of those, pe−1 are multiples of p such that k 6⊥ pe, 1 ≤ k ≤ pe. (Intuitively, these are
k ∈ {p, 2p, 3p, . . . , (pe−1)p}.) This yields

ϕ(pe) = |{k : 1 ≤ k ≤ pe ∧ k ⊥ pe}|
= |{k : 1 ≤ k ≤ pe}| − |{k : 1 ≤ k ≤ pe ∧ k 6⊥ pe}|
= pe − pe−1

= pe−1(p− 1)

= pe(1− 1

p
).

I 28. [M25 ] Show that the method used to prove Theorem F can be used to prove the following extension,
called Euler’s theorem: aϕ(m) ≡ 1 (modulo m), for any positive integer m, when a ⊥ m. (In particular, the
number n′ in exercise 19 may be taken to be nϕ(m)−1 mod m.)

Proposition (Euler’s theorem). aϕ(m) ≡ 1 (mod m), for any integer m > 0, when
a ⊥ m.

Proof. Let a and m be arbitrary integers such that m > 0 and a ⊥ m. We must show
that aϕ(m) ≡ 1 (mod m).

Since a ⊥ m, we have that
a ≡ 1 (mod m).

Let x1, x2, . . . , xϕ(m) be the ϕ(m) integers such that xi ⊥ p, 1 ≤ i ≤ ϕ(m). For each,
we have that

xi ≡ xi (mod m)

and by Law A, we can multiply each to obtain

axi ≡ xi (mod m).

Similarly, we may multiply for 1 ≤ i ≤ ϕ(m) to obtain∏
1≤i≤ϕ(m)

axi ≡
∏

1≤i≤ϕ(m)

xi (mod m)

or equivalently

aϕ(m)
∏

1≤i≤ϕ(m)

xi ≡
∏

1≤i≤ϕ(m)

xi (mod m).
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Finally, as each xi ⊥ m, we may cancel out the products to obtain

aϕ(m) ≡ 1 (mod m)

as we needed to show.

29. [M22 ] A function f(n) of positive integers n is called multiplicative if f(rs) = f(r)f(s) whenever
r ⊥ s. Show that each of the following functions is multiplicative: (a) f(n) = nc, where c is any constant;
(b) f(n) = [n is not divisible by k2 for any integer k > 1]; (c) f(n) = ck, where k is the number of distinct
primes that divide n; (d) the product of any two multiplicative functions.

We may prove that the various functions are multiplicative.

Proposition (A). The function f(n) = nc, where c is any constant, is multiplicative.

Proof. Let f be a function such that f(n) = nc, where c is an arbitrary constant; and
let r and s be arbitrary integers such that r ⊥ s. We must show that f is multiplicative;
that is, that f(rs) = f(r)f(s). But

f(rs) = (rs)c

= rcsc

= f(r)f(s)

as we needed to show.

Proposition (B). The function f(n) = [k2 - n] for any integer k > 1, is multiplicative.

Proof. Let f be a function such that f(n) = [k2 - n] for any integer k > 1; and let r
and s be arbitrary integers such that r ⊥ s. We must show that f is multiplicative;
that is, that f(rs) = f(r)f(s).

First, we have that k2 - n for any integer k > 1. But we also have that n - k2, since
k2 being a multiple of n would require n to be a square, a possibility precluded by the
fact that k2 - n for any integer k > 1. Therefore, we have the stronger condition that
n ⊥ k2.

Then

f(rs) = [rs ⊥ k2]

= [k2 ≡ 1 (mod rs)]

= [k2 ≡ 1 (mod r) ∧ k2 ≡ 1 (mod s)] by Law D

= [k2 ≡ 1 (mod r)][k2 ≡ 1 (mod s)]

= [r ⊥ k2][s ⊥ k2]

= f(r)f(s)

as we needed to show.

Proposition (C). The function f(n) = ck, where c is any constant and k is the number
of distinct primes that divide n, is multiplicative.

Proof. Let f be a function such that f(n) = ck, where c is any constant and k is the
number of distinct primes that divide n; and let r and s be arbitrary integers such that
r ⊥ s. We must show that f is multiplicative; that is, that f(rs) = f(r)f(s).
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Let kn denote the number of distinct primes that divide n. Since r ⊥ s, the prime
factors of r must be distinct from the prime factors of s, and so we must that have
krs = kr + ks.

Then,

f(rs) = ckrs

= ckr+ks

= ckrcks

= f(r)f(s)

as we needed to show.

Proposition (D). The function f(n) = g(n)h(n), where g and h are multiplicative
functions, is multiplicative.

Proof. Let f be a function such that f(n) = g(n)h(n), where g and h are multiplicative
functions; and let r and s be arbitrary integers such that r ⊥ s. We must show that f
is multiplicative; that is, that f(rs) = f(r)f(s). But

f(rs) = g(rs)h(rs)

= g(r)g(s)h(r)h(s)

= g(r)h(r)g(s)h(s)

= f(r)f(s)

as we needed to show.

30. [M30 ] Prove that the function ϕ(n) of exercise 27 is multiplicative. Using this fact, evaluate ϕ(1000000),
and give a method for evaluating ϕ(n) in a simple way once n has been factored into primes.

We may prove that Euler’s totient function ϕ(n) is multiplicative.

Proposition. Euler’s totient function ϕ(n) is multiplicative.

Proof. Let
ϕ(n) = |{k : 1 ≤ k ≤ n ∧ k ⊥ n}|

be Euler’s totient function; and r and s arbtrary integers such that r ⊥ s. We must
show that ϕ(rs) = ϕ(r)ϕ(s).

Let R = {r1, r2, . . . , rϕ(r)} be those integers such that rk ⊥ r, 1 ≤ k ≤ r; and S =
{s1, s2, . . . , sϕ(s)} be those integers such that sk ⊥ s, 1 ≤ k ≤ s; and define

T = {ti = rs′ + sr′ : r′ ∈ R ∧ s′ ∈ S}.

T has the following properties:

1. ti ⊥ rs. Suppose not. That is, suppose that gcd(rs′ + sr′, rs) > 1 had
a prime divisor p. Then, without loss of generality, p divides both r and
not s (since r ⊥ s) and r′. But r′ ⊥ r, so p = 1, which is a contradiction,
similarly for the case p divides s and not r, and so, ti ⊥ rs.

2. ti 6≡ tj (mod rs). Suppose rs′+sr′ ≡ rs′′+sr′′ (mod rs). Then rs divides
r(s′−s′′)+s(r′−r′′) and s divides r(s′−s′′). But r ⊥ s, so s divides s′−s′′,
or equivalently, s′ ≡ s′′ (mod s). As s′ and s′′ are both relatively prime
and less than s, s′ = s′′. Similarly for rs dividing s(r′ − r′′) to discover
r′ = r′′. And so, no two ti 6≡ tj (mod rs).
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3. (∀n ⊥ rs) (∃ti) (n ≡ ti (mod rs)). Suppose n ⊥ rs. Since r ⊥ s, n can be
expressed as n = rv + su for arbitrary integers u and v. We have u 6⊥ r
and v 6⊥ s since rv + su ⊥ rs and r ⊥ s. Expressing u as u = r′ + ra and
v as v = s′ + sb for arbitrary integers a and b, we have n = rv + su =
r(s′ + sb) + s(r′ + ra) = rs′ + rsb + sr′ + sra = rs′ + sr′ + rs(a + b), or
equivalently, n ≡ ti (mod rs).

Since each ti ⊥ rs, no two ti 6≡ tj (mod rs), and for any integer n ⊥ rs there is a ti
such that n ≡ ti (mod rs), i 6= j; we have that T = {t1, t2, . . . , tϕ(rs)}, those integers
such that tk ⊥ rs, 1 ≤ k ≤ rs; and that ϕ(rs) = |R||S| = ϕ(r)ϕ(s).

Then

ϕ(rs) = ϕ(r)ϕ(s)

as we needed to show.

We can use this fact and the result of exercise 27, that ϕ(pe) = pe − pe−1 for any prime p, to
evaluate ϕ(1000000) as

ϕ(1000000) = ϕ((26)(56))

= ϕ(26)ϕ(56)

= (26 − 25)(56 − 55)

= (32)(12500)

= 400000.

A method for evaluating ϕ(z) in a simple way once z has been factored into n primes pi raised
to powers wi as

∏
1≤i≤n p

wi
i is

ϕ(z) =
∏

1≤i≤n

ϕ(pwi
i )

=
∏

1≤i≤n

pwi
i − p

wi−1
i

=

 ∏
1≤i≤n

pwi
i

 ∏
1≤i≤n

1− 1

pi


= z

∏
p|z

p prime

1− 1

p
.

31. [M22 ] Prove that if f(n) is multiplicative, so is g(n) =
∑
d\n f(d).

Proposition. If f(n) is multiplicative, so is g(n) =
∑
d\n f(d).

Proof. Let f(n) be a multiplicative function; g(n) =
∑
d|n f(d); and r and s arbitrary

integers such that r ⊥ s. We must show that g(rs) = g(r)g(s). But since r ⊥ s, the
divisors d of rs may be partitioned into those that divide r and those that divide s;
let these be denoted a and b such that a|r and b|s. Then, as a ⊥ b since gcd(r, s) =
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gcd(a, s) = gcd(a, b) = 1,

g(rs) =
∑
d|rs

f(d)

=
∑
a|r
b|s

f(ab)

=
∑
a|r
b|s

f(a)f(b)

=

∑
a|r

f(a)

∑
b|s

f(b)


= g(r)g(s).

32. [M18 ] Prove the double-summation identity∑
d\n

∑
c\d

f(c, d) =
∑
c\n

∑
d\(n/c)

f(c, cd),

for any function f(x, y).

Proposition.
∑
d|n
∑
c|d f(c, d) =

∑
c|n
∑
d|(n/c) f(c, cd).

Proof. Let f(a, b) be an arbitrary function. We must show that∑
d|n

∑
c|d

f(c, d) =
∑
c|n

∑
d|(n/c)

f(c, cd).

But, since n = cd′k if and only if n = ck′ ∧ n/c = d′k for arbitrary integers k and k′,∑
d|n

∑
c|d

f(c, d) =
∑

d|n∧c|d

f(c, d)

=
∑

cd′|n∧c|cd′
f(c, cd′) let d = cd′

=
∑
cd′|n

f(c, cd′)

=
∑

cd′|n∧cd′|n

f(c, cd′)

=
∑

c|n∧d′|(n/c)

f(c, cd′)

=
∑
c|n

∑
d′|(n/c)

f(c, cd′)

=
∑
c|n

∑
d|(n/c)

f(c, cd)

as we needed to show.

33. [M18 ] Given that m and n are integers, evaluate (a) b 12 (n + m)c+ b 12 (n−m + 1)c; (b) d 12 (n + m)e+
d 12 (n−m+ 1)e. (The special case m = 0 is worth noting.)
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We may evaluate the equations.

(a) We want to evalute ⌊
1

2
(n+m)

⌋
+

⌊
1

2
(n−m+ 1)

⌋
.

We consider two cases, depending on whether n±m is odd or even.

Case 1. [n±m odd ] In the case that n±m is odd,⌊
1

2
(n+m)

⌋
+

⌊
1

2
(n−m+ 1)

⌋
=
n+m− 1

2
+
n−m+ 1

2

=
n+m− 1 + n−m+ 1

2

=
2n

2
= n.

Case 2. [n±m even] In the case that n±m is even,⌊
1

2
(n+m)

⌋
+

⌊
1

2
(n−m+ 1)

⌋
=
n+m

2
+
n−m

2

=
n+m+ n−m

2

=
2n

2
= n.

In either case, we have ⌊
1

2
(n+m)

⌋
+

⌊
1

2
(n−m+ 1)

⌋
= n.

(b) We want to evaluate ⌈
1

2
(n+m)

⌉
+

⌈
1

2
(n−m+ 1)

⌉
.

We consider two cases, depending on whether n±m is odd or even.

Case 1. [n±m odd ] In the case that n±m is odd,⌈
1

2
(n+m)

⌉
+

⌈
1

2
(n−m+ 1)

⌉
=
n+m+ 1

2
+
n−m+ 1

2

=
n+m+ 1 + n−m+ 1

2

=
2n+ 2

2
= n+ 1.

Case 2. [n±m even] In the case that n±m is even,⌈
1

2
(n+m)

⌉
+

⌈
1

2
(n−m+ 1)

⌉
=
n+m

2
+
n−m+ 2

2

=
n+m+ n−m+ 2

2

=
2n+ 2

2
= n+ 1.
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In either case, we have ⌈
1

2
(n+m)

⌉
+

⌈
1

2
(n−m+ 1)

⌉
= n+ 1.

The special case m = 0 yields ⌊n
2

⌋
+

⌊
n+ 1

2

⌋
= n

and ⌈n
2

⌉
+

⌈
n+ 1

2

⌉
= n+ 1.

I 34. [M21 ] What conditions on the real number b > 1 are necessary and sufficient to guarantee that
blogb xc = blogbbxcc for all real x ≥ 1?

For real numbers x ≥ 1 and b > 1 we have for some arbitrary integer n that

blogb xc = n ⇐⇒ n ≤ logb x < n+ 1

⇐⇒ bn ≤ x < bn+1

⇐⇒ bn ≤ bxc < bn+1 b ∈ Z
⇐⇒ n ≤ logb bxc < n+ 1

⇐⇒ blogb bxcc = n.

That is, b an integer such that b ≥ 2 are necessary and sufficient conditions to guarantee that

blogb xc = blogbbxcc

for all real x ≥ 1.

Note that we have the same conditions for ceilings, as

dlogb xe = n ⇐⇒ n < logb x ≤ n+ 1

⇐⇒ bn < x ≤ bn+1

⇐⇒ bn < dxe ≤ bn+1 b ∈ Z
⇐⇒ n < logb dxe ≤ n+ 1

⇐⇒ dlogb dxee = n.

I 35. [M20 ] Given that m and n are integers and n > 0, prove that

b(x+m)/nc = b(bxc+m)/nc

for all real x. (When m = 0, we have an important special case.) Does an analogous result hold for the
ceiling function?

We may prove the result for floors.

Proposition. b(x+m)/nc = b(bxc+m)/nc for integers m, n, n > 0 and real x.

Proof. Let m and n be arbitrary integers such that n > 0, and x an arbitrary real
number. We must show that

b(x+m)/nc = b(bxc+m)/nc.



Exercises from Section 1.2.4 22

But for an arbitary integer z

b(x+m)/nc = z ⇐⇒ z ≤ (x+m)/n < z + 1

⇐⇒ nz ≤ (x+m) < n(z + 1)

⇐⇒ nz −m ≤ x < n(z + 1)−m
⇐⇒ nz −m ≤ bxc < n(z + 1)−m
⇐⇒ nz ≤ bxc+m < n(z + 1)

⇐⇒ z ≤ (bxc+m)/n < z + 1

⇐⇒ b(bxc+m)/nc = z

as we needed to show.

Note the important special case for m = 0,

bx/nc = bbxc/nc.

An analogous result holds for ceilings.

Proposition. d(x+m)/ne = d(dxe+m)/ne for integers m, n, n > 0 and real x.

Proof. Let m and n be arbitrary integers such that n > 0, and x an arbitrary real
number. We must show that

d(x+m)/ne = d(dxe+m)/ne.

But for an arbitary integer z

d(x+m)/ne = z ⇐⇒ z < (x+m)/n ≤ z + 1

⇐⇒ nz < (x+m) ≤ n(z + 1)

⇐⇒ nz −m < x ≤ n(z + 1)−m
⇐⇒ nz −m < dxe ≤ n(z + 1)−m
⇐⇒ nz < dxe+m ≤ n(z + 1)

⇐⇒ z < (dxe+m)/n ≤ z + 1

⇐⇒ d(dxe+m)/ne = z

as we needed to show.

36. [M23 ] Prove that
∑n
k=1bk/2c = bn2/4c; also evaulate

∑n
k=1dk/2e.

We may prove the sum for floors.

Proposition.
∑

1≤k≤n
⌊
k
2

⌋
=
⌊
n2

4

⌋
.

Proof. Let n be an arbitary positive integer. We must show that∑
1≤k≤n

⌊
k

2

⌋
=

⌊
n2

4

⌋
.

We consider two cases, depending on whether n = 2m is even or n = 2m+ 1 is odd for
an arbitrary integer m. We also will utilize the equality∑

1≤k≤n

⌊
k

2

⌋
=

∑
1≤k≤n

⌊
n+ 1− k

2

⌋
.
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Case 1. [n = 2m] We have the equality⌊
k

2

⌋
+

⌊
n+ 1− k

2

⌋
= m

since for an arbitrary integer q, if k = 2q is even⌊
k

2

⌋
+

⌊
n+ 1− k

2

⌋
=

⌊
2q

2

⌋
+

⌊
2m+ 1− 2q

2

⌋
= m+

⌊
1

2

⌋
= m;

and if k = 2q + 1 is odd⌊
k

2

⌋
+

⌊
n+ 1− k

2

⌋
=

⌊
2q + 1

2

⌋
+

⌊
2m+ 1− 2q − 1

2

⌋
=

⌊
1

2

⌋
+m = m.

In this case then ∑
1≤k≤n

⌊
k

2

⌋
=

1

2

∑
1≤k≤n

(⌊
k

2

⌋
+

⌊
n+ 1− k

2

⌋)
=

1

2

∑
1≤k≤n

m

=
nm

2

=
n2

4
.

Case 2. [n = 2m+ 1] In this case,

∑
1≤k≤n

⌊
k

2

⌋
=

 ∑
1≤k≤2m

⌊
k

2

⌋+
⌊n

2

⌋
=

(2m)2

4
+m

= m2 +m

n2

4
− 1

4
.

And so, in either case,

(n− 1)2

4
<
n2

4
− 1

4
≤

∑
1≤k≤n

⌊
k

2

⌋
≤ n2

4

or equivalently, ∑
1≤k≤n

⌊
k

2

⌋
=

⌊
n2

4

⌋
as we needed to show.

For the second sum, we may prove another result.

Proposition.
∑

1≤k≤n
⌈
k
2

⌉
=
⌈
n(n+2)

4

⌉
.
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Proof. Let n be an arbitary positive integer. We must show that∑
1≤k≤n

⌈
k

2

⌉
=

⌈
n(n+ 2)

4

⌉
.

We consider two cases, depending on whether n = 2m is even or n = 2m+ 1 is odd for
an arbitrary integer m. We also will utilize the equality∑

1≤k≤n

⌈
k

2

⌉
=

∑
1≤k≤n

⌈
n+ 1− k

2

⌉
.

Case 1. [n = 2m] We have the equality⌈
k

2

⌉
+

⌈
n+ 1− k

2

⌉
= m+ 1

since for an arbitrary integer q, if k = 2q is even⌈
k

2

⌉
+

⌈
n+ 1− k

2

⌉
=

⌈
2q

2

⌉
+

⌈
2m+ 1− 2q

2

⌉
= m+ 1;

and if k = 2q + 1 is odd⌈
k

2

⌉
+

⌈
n+ 1− k

2

⌉
=

⌈
2q + 1

2

⌉
+

⌈
2m+ 1− 2q − 1

2

⌉
= m+ 1.

In this case ∑
1≤k≤n

⌈
k

2

⌉
=

1

2

∑
1≤k≤n

(⌈
k

2

⌉
+

⌈
n+ 1− k

2

⌉)
=

1

2

∑
1≤k≤n

m+ 1

=
n(m+ 1)

2

=
n((n/2) + 1)

2

=
n(n+ 2)

4
.

Case 2. [n = 2m+ 1] In this case

∑
1≤k≤n

⌈
k

2

⌉
=

 ∑
1≤k≤2m

⌈
k

2

⌉+
⌈n

2

⌉
=

2m(2m+ 2)

4
+m+ 1

= (m+ 1)2

(n+ 1)2

4
.

And so, in either case,

n(n+ 2)

4
≤

∑
1≤k≤n

⌈
k

2

⌉
≤ (n+ 1)2

4
<

(n+ 1)(n+ 3)

4
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or equivalently, ∑
1≤k≤n

⌈
k

2

⌉
=

⌈
n(n+ 2)

4

⌉
as we needed to show.

I 37. [M30 ] Let m and n be integers, n > 0. Show that∑
0≤k<n

⌊
mk + x

n

⌋
=

(m− 1)(n− 1)

2
+
d− 1

2
+ dbx/dc,

where d is the greatest common divisor of m and n, and x is any real number.

We may prove the result for floors.

Proposition.
∑

0≤k<n
⌊
mk+x
n

⌋
= (m−1)(n−1)

2 + d−1
2 + dbx/dc for d = gcd(m,n).

Proof. Let m, n, and d be arbitrary integers such that d = gcd(m,n) and x an arbitrary
real number. We must show that∑

0≤k<n

⌊
mk + x

n

⌋
=

(m− 1)(n− 1)

2
+
d− 1

2
+ d

⌊x
d

⌋
.

But since for an arbitrary real z, z = bxc+ x mod 1 = bxc+ {x},∑
0≤k<n

⌊
mk + x

n

⌋
=

∑
0≤k<n

mk + x

n
−
∑

0≤k<n

{
mk + x

n

}
.

We have that

∑
0≤k<n

mk + x

n
=
m

n

 ∑
0≤k<n

k

+
1

n

 ∑
0≤k<n

x


=
m

n

(n− 1)n

2
+

1

n
nx

=
m(n− 1)

2
+ x.

And so ∑
0≤k<n

⌊
mk + x

n

⌋
=
m(n− 1)

2
+ x−

∑
0≤k<n

{
mk + x

n

}
.
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Then, for n′ = n/d and m′ = m/d, we have∑
0≤k<n

{
mk + x

n

}
=

∑
0≤k<n

{
m′k

n′
+
x

n

}

=
∑

0≤i<d

∑
n′i≤j<n′(i+1)

{
m′j

n′
+
x

n

}

=
∑

0≤i<d

∑
0≤j<n′

{
m′(j + n′i)

n′
+
x

n

}

=
∑

0≤i<d

∑
0≤j<n′

{
m′j

n′
+m′i+

x

n

}

=
∑

0≤i<d

∑
0≤j<n′

{
m′j

n′
+
x

n

}
since m′i ≡ 0 (mod 1)

= d
∑

0≤j<n′

{
m′j

n′
+
x

n

}

= d
∑

0≤j<n′

{
m′j

n′
+
x/d

n′

}

= d
∑

0≤j<n′

{
m′j + x/d

n′

}

= d
∑

0≤j<n′

{
m′j + bx/dc+ {x/d}

n′

}

= d
∑

0≤j<n′

{
m′j

n′
+
bx/dc
n′

+
{x/d}
n′

}

= d
∑

0≤j<n′

{
j

n′
+
bx/dc
n′

+
{x/d}
n′

}
since m′j/n′ ≡ j/n′ (mod 1)

= d
∑

0≤j<n′

{
j + bx/dc

n′
+
{x/d}
n′

}
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= d

 ∑
0≤j<n′

{
j

n′
+
{x/d}
n′

}+

 ∑
0≤j<n′

{
bx/dc
n′

}
= d

 ∑
0≤j<n′

{
j

n′
+
{x/d}
n′

}+ n′
{
bx/dc
n′

}
= d

 ∑
0≤j<n′

{
j

n′
+
{x/d}
n′

}+ {bx/dc}


= d

 ∑
0≤j<n′

{
j

n′
+
{x/d}
n′

}+ 0

 since bx/dc ≡ 0 (mod 1)

= d
∑

0≤j<n′

{
j

n′
+
{x/d}
n′

}

= d
∑

0≤j<n′

j

n′
+
{x/d}
n′

since 0 ≤ j + {x/d} < n′

= d
∑

0≤j<n′

j + {x/d}
n′

= d
(n′ − 1)n′

2n′
+
dn′

n′
{x/d}

=
n− d

2
+
dn′

n′
(x/d− bx/dc)

=
n− d

2
+ x− dbx/dc.

For justifications of certain steps, note that

m′ ≡ 0 (mod 1) ∧ i ≡ 0 (mod 1) ⇐⇒ m′i ≡ 0 (mod 1);

m ≡ gcd(m,n) (mod n) ⇐⇒ m ≡ d (mod n)

⇐⇒ m′d ≡ d (mod n′d)

⇐⇒ m′ ≡ 1 (mod n′)

⇐⇒ m′j ≡ j (mod n′)

⇐⇒ m′j/n′ ≡ j/n′ (mod 1);

and

0 ≤ j ≤ n′ − 1 ∧ {x/d} < 1 ⇐⇒ 0 ≤ j + {x/d} < n′.

And so ∑
0≤k<n

⌊
mk + x

n

⌋
=
m(n− 1)

2
+ x− n− d

2
− x+ dbx/dc

=
mn−m− n+ d

2
+ dbx/dc

=
(m− 1)(n− 1)

2
+
d− 1

2
+ dbx/dc
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as we needed to show.

For ceilings, note that by negating both sides of the equality yields

−
∑

0≤k<n

⌊
mk + x

n

⌋
=

∑
0≤k<n

−
⌊
mk + x

n

⌋

=
∑

0≤k<n

⌈
−mk − x

n

⌉

and

−
(

(m− 1)(n− 1)

2
+
d− 1

2
+ dbx/dc

)
=

(−m+ 1)(n− 1)

2
− d− 1

2
− dbx/dc

=
(−m+ 1)(n− 1)

2
− d− 1

2
+ dd−x/de

or equivalently since x and m are arbitrary∑
0≤k<n

⌈
mk + x

n

⌉
=

(m+ 1)(n− 1)

2
− d− 1

2
+ ddx/de.

38. [M26 ] (E. Busche, 1909.) Prove that, for all real x and y with y > 0,∑
0≤k<y

⌊
x+

k

y

⌋
= bxy + bx+ 1c(dye − y)c.

In particular, when y is a positive integer n, we have the important formula

bxc+

⌊
x+

1

n

⌋
+ · · ·+

⌊
x+

n− 1

n

⌋
= bnxc.

Proposition.
∑

0≤k<y

⌊
x+ k

y

⌋
= bxy + bx+ 1c(dye − y)c.

Proof. Let x and y be artbitrary real numbers such that y > 0. We must show that∑
0≤k<y

⌊
x+

k

y

⌋
= bxy + bx+ 1c(dye − y)c.

Let n be that unique integer such that n = d(1− {x})ye so that

n− 1 < (1− {x})y ≤ n ⇐⇒ n− 1

y
< 1− {x} ≤ n

y

⇐⇒ n− 1

y
< 1 + bxc − x ≤ n

y

⇐⇒ x+
n− 1

y
< 1 + bxc ≤ x+

n

y

⇐⇒ x+
n− 1

y
< bx+ 1c ≤ x+

n

y

⇐⇒ n− 1

y
< bx+ 1c − x ≤ n

y

⇐⇒ n− 1 < (bx+ 1c − x)y ≤ n
⇐⇒ n− 1 < bx+ 1cy − xy ≤ n
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or equivalently
n = dbx+ 1cy − xye.

Note that for 0 ≤ k ≤ n− 1 < n

bxc ≤ x+
k

y
< bx+ 1c ⇐⇒

⌊
x+

k

y

⌋
= bxc

and that for n ≤ k ≤ dye − 1 < y

bx+ 1c ≤ x+
k

y
< bx+ 2c ⇐⇒

⌊
x+

k

y

⌋
= bx+ 1c.

Then ∑
0≤k<y

⌊
x+

k

y

⌋
=

∑
0≤k≤dye−1

⌊
x+

k

y

⌋

=
∑

0≤k≤n−1

⌊
x+

k

y

⌋
+

∑
n≤k≤dye−1

⌊
x+

k

y

⌋
= nbxc+ ((dye − 1)− n+ 1)bx+ 1c
= nbxc+ (dye − n)bx+ 1c
= nbxc+ dyebx+ 1c − nbx+ 1c
= dyebx+ 1c − n
= bx+ 1cdye − dbx+ 1cy − xye
= bx+ 1cdye+ b−bx+ 1cy + xyc
= bxy + bx+ 1cdye − bx+ 1cyc
= bxy + bx+ 1c(dye − y)c

as we needed to show.

[Crelle 136 (1909), 42; the case y = n is due to C. Hermite, Acta Math. 5 (1884), 315.]

39. [HM35 ] A function f for which f(x) + f(x+ 1
n ) + · · ·+ f(x+ n−1

n ) = f(nx), whenever n is a positive
integer, is called a replicative function. The previous exercise establishes the fact that bxc is replicative.
Show that the following functions are replicative:

a) f(x) = x− 1
2 ;

b) f(x) = [x is an integer];

c) f(x) = [x is a positive integer];

d) f(x) = [there exists a rational number r and an integer m such that x = rπ +m];

e) three other functions like the one in (d), with r and/or m restricted to positive values;

f) f(x) = log|2 sinπx|, if the value f(x) = −∞ is allowed;

g) the sum of any two replicative functions;

h) a constant multiple of a replicative function;

i) the function g(x) = f(x− bxc), where f(x) is replicative.

We may prove that numerous functions are replicative.

Proposition (A). f(x) = x− 1
2 is replicative.
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Proof. Let f be a function defined as

f(x) = x− 1

2

and let n be an arbitrary positive integer. We must show that∑
0≤k≤n−1

f

(
x+

k

n

)
= f(nx).

But ∑
0≤k≤n−1

f

(
x+

k

n

)
=

∑
0≤k≤n−1

x+
k

n
− 1

2

=
1

x

∑
0≤k≤n−1

1 +
1

n

∑
0≤k≤n−1

k − 1

2

∑
0≤k≤n−1

1

=
n

x
+

(n− 1)n

2n
− n

2

=
n

x
+
n− 1

2
− n

2

=
n

x
+
n− 1− n

2

=
n

x
− 1

2
= f(nx)

as we needed to show.

Proposition (B). f(x) = [x mod 1 = 0] is replicative.

Proof. Let f be a function defined as

f(x) = [x mod 1 = 0]

and let n be an arbitrary positive integer. We must show that∑
0≤k≤n−1

f

(
x+

k

n

)
= f(nx).

But for some k′ = n− nx mod n− 1, 0 ≤ k′ ≤ n− 1, we have

x = bxc+ x mod 1

=
⌊nx
n

⌋
+
nx mod n

n

=
⌊nx
n

⌋
+
n− k′ − 1

n

if and only if x− n−k′−1
n is an integer, or equivalently, if and only if

(
x+ k′

n

)
mod 1 = 0.

In the case that such a k′ exists, then clearly n | x and nx is an integer, or equivalently,
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nx mod 1 = 0, and∑
0≤k≤n−1

f

(
x+

k

n

)
=

∑
0≤k≤n−1

[(
x+

k

n

)
mod 1 = 0

]

=
∑

0≤k≤n−1
k 6=k′

[(
x+

k

n

)
mod 1 = 0

]

+
∑

0≤k≤n−1
k=k′

[(
x+

k

n

)
mod 1 = 0

]

= 0 + 1

= 1

= [nx mod 1 = 0]

= f(nx).

In the case that such a k′ does not exist, then clearly n - x and nx is not an integer, or
equivalently, nx mod 1 6= 0, and∑

0≤k≤n−1

f

(
x+

k

n

)
=

∑
0≤k≤n−1

[(
x+

k

n

)
mod 1 = 0

]
= 0

= [nx mod 1 = 0]

= f(nx).

In either case, we find that ∑
0≤k≤n−1

f

(
x+

k

n

)
= f(nx)

as we needed to show.

Proposition (C). f(x) = [x mod 1 = 0 ∧ x > 0] is replicative.

Proof. Let f be a function defined as

f(x) = [x mod 1 = 0 ∧ x > 0] = [x > 0][x mod 1 = 0]

and let n be an arbitrary positive integer. We must show that∑
0≤k≤n−1

f

(
x+

k

n

)
= f(nx).

But similar to Proposition B, for some k′ = n − nx mod n − 1, 0 ≤ k′ ≤ n − 1, we
have

x = bxc+ x mod 1

=
⌊nx
n

⌋
+
nx mod n

n

=
⌊nx
n

⌋
+
n− k′ − 1

n
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if and only if x− n−k′−1
n is an integer, or equivalently, if and only if

(
x+ k′

n

)
mod 1 = 0.

In the case that such a k′ exists, then clearly n | x and nx is an integer, or equivalently,
nx mod 1 = 0, and∑
0≤k≤n−1

f

(
x+

k

n

)
=

∑
0≤k≤n−1

[
x+

k

n
> 0

] [(
x+

k

n

)
mod 1 = 0

]

=
∑

0≤k≤n−1
k 6=k′

[
x+

k

n
> 0

] [(
x+

k

n

)
mod 1 = 0

]

+
∑

0≤k≤n−1
k=k′

[
x+

k

n
> 0

] [(
x+

k

n

)
mod 1 = 0

]

=
∑

0≤k≤n−1
k 6=k′

[
x+

k

n
> 0

]
(0)

+

[
x+

k′

n
> 0 ∧

(
x+

k

n

)
mod 1 = 0

] [(
x+

k

n

)
mod 1 = 0

]
= 0 +

[
x+

k′

n
> 0

] [(
x+

k′

n

)
mod 1 = 0

]
=

[
x+

k′

n
> 0 ∧

(
x+

k′

n

)
mod 1 = 0

]
=

[
x+

k′

n
≥ 1 ∧

(
x+

k′

n

)
mod 1 = 0

]
=

[
x > 0 ∧

(
x+

k′

n

)
mod 1 = 0

]
=

[
nx > 0 ∧

(
x+

k′

n

)
mod 1 = 0

]
= [nx > 0]

[(
x+

k′

n

)
mod 1 = 0

]
= [nx > 0](1)

= [nx > 0][nx mod 1 = 0]

= f(nx)

since x ≤ 0 if and only if x + k′

n < 1, and so neither it nor any multiple a positive
integer such as nx.

In the case that such a k′ does not exist, then clearly n - x and nx is not an integer, or
equivalently, nx mod 1 6= 0, and∑

0≤k≤n−1

f

(
x+

k

n

)
=

∑
0≤k≤n−1

[
x+

k

n
> 0

] [(
x+

k

n

)
mod 1 = 0

]

=
∑

0≤k≤n−1

[
x+

k

n
> 0

]
(0)

= 0

= [nx > 0](0)

= [nx > 0][nx mod 1 = 0]

= f(nx).
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In either case, we find that ∑
0≤k≤n−1

f

(
x+

k

n

)
= f(nx)

as we needed to show.

Proposition (D). f(x) = [∃r ∈ Q,m ∈ Z : x = rπ +m] is replicative.

Proof. Let f be a function defined as

f(x) = [∃r ∈ Q,m ∈ Z : x = rπ +m]

and let n be an arbitrary positive integer. We must show that∑
0≤k≤n−1

f

(
x+

k

n

)
= f(nx).

In the case that we may find an integer k′ such that

x+
k′

n
= rπ +m

it must be unique since if we found an integer k′′ such that x+ k′′

n = r′π+m′, (r− r′)π
can only be an integer if r = r′ and (m−m′) can only be a rational if m = m′, and so
k′ = k′′. Then,

x+
k′

n
= rπ +m ⇐⇒ nx+ k′ = nrπ + nm

⇐⇒ nx = nrπ + nm− k′

⇐⇒ nx = r′π +m′

for a rational r′ = nr and an integer m′ = nm− k′. Hence∑
0≤k≤n−1

f

(
x+

k

n

)
=

∑
0≤k≤n−1

[∃r ∈ Q,m ∈ Z : x+
k

n
= rπ +m]

=
∑

0≤k≤n−1
k 6=k′

[∃r ∈ Q,m ∈ Z : x+
k

n
= rπ +m]

+
∑

0≤k≤n−1
k=k′′

[∃r ∈ Q,m ∈ Z : x+
k

n
= rπ +m]

=
∑

0≤k≤n−1
k 6=k′

(0) + [∃r ∈ Q,m ∈ Z : x+
k′

n
= rπ +m]

= 0 + 1

= 1

= [∃r ∈ Q,m ∈ Z : nx = rπ +m]

= f(nx).

In the case that we may not find such an integer k′, even k′ = 0, then clearly x 6= rπ+m
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if and only if nx 6= r′π +m′ for r′ = nr and m′ = nm, and in such a case∑
0≤k≤n−1

f

(
x+

k

n

)
=

∑
0≤k≤n−1

[∃r ∈ Q,m ∈ Z : x+
k

n
= rπ +m]

=
∑

0≤k≤n−1

(0)

= 0

= [∃r ∈ Q,m ∈ Z : nx = rπ +m]

= f(nx).

In either case, we find that ∑
0≤k≤n−1

f

(
x+

k

n

)
= f(nx)

as we needed to show.

Proposition (E1). f(x) = [∃r ∈ Q+,m ∈ Z : x = rπ +m] is replicative.

Proof. Let f be a function defined as

f(x) = [∃r ∈ Q+,m ∈ Z : x = rπ +m]

and let n be an arbitrary positive integer. We must show that∑
0≤k≤n−1

f

(
x+

k

n

)
= f(nx).

But we may rely on the proof of Proposition D, and specifically, the determination
of the rational r′ such that r′ = nr. r > 0 if and only if nr > 0, since n > 0. Hence the
result.

Proposition (E2). f(x) = [∃r ∈ Q,m ∈ Z+ : x = rπ +m] is replicative.

Proof. Let f be a function defined as

f(x) = [∃r ∈ Q,m ∈ Z+ : x = rπ +m]

and let n be an arbitrary positive integer. We must show that∑
0≤k≤n−1

f

(
x+

k

n

)
= f(nx).

But we may rely on the proof of Proposition D, and specifically, the determination of
the integer m′ such that m′ = nm− k′. m > 0 if and only if nr > 0, since n > k′ ≥ 0.
Hence the result.

Proposition (E3). f(x) = [(∃r ∈ Q+,m ∈ Z+ : x = rπ +m] is replicative.

Proof. Let f be a function defined as

f(x) = [∃r ∈ Q+,m ∈ Z+ : x = rπ +m]

and let n be an arbitrary positive integer. We must show that∑
0≤k≤n−1

f

(
x+

k

n

)
= f(nx).
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But we may rely on the proofs of Proposition E1 and Proposition E2, and specif-
ically, the determination of both the rational r′ such that r′ = nr and the integer m′

such that m′ = nm− k′ simultaneously. Hence the result.

Proposition (F). f(x) = log|2 sinπx| is replicative, if the value f(x) = −∞ is allowed.

Proof. Let f be a function defined as

f(x) = log|2 sinπx|

and let n be an arbitrary positive integer. We must show that∑
0≤k≤n−1

f

(
x+

k

n

)
= f(nx)

allowing for f(x) = −∞.

Note that we have the equalities

2 sin θ = (eiθ − e−iθ)/i = (1− e−2iθ)eiθ−iπ/2,∏
0≤k≤n−1

(1− e−2iπ(x+k/n)) = 1− e−2iπnx,

and ∏
0≤k≤n−1

eiπ(x−(1/2)+(k/n)) = eiπ(nx−1/2).

Then∑
0≤k≤n−1

f

(
x+

k

n

)
=

∑
0≤k≤n−1

log

∣∣∣∣2 sinπ

(
x+

k

n

)∣∣∣∣
= log

∣∣∣∣∣∣
∏

0≤k≤n−1

2 sinπ

(
x+

k

n

)∣∣∣∣∣∣
= log

∣∣∣∣∣∣
∏

0≤k≤n−1

(eiπ(x+ k
n ) − e−iπ(x+ k

n ))/i

∣∣∣∣∣∣
= log

∣∣∣∣∣∣
∏

0≤k≤n−1

(1− e−2iπ(x+ k
n ))eiπ(x+ k

n )−iπ/2

∣∣∣∣∣∣
= log

∣∣∣∣∣∣
 ∏

0≤k≤n−1

1− e−2iπ(x+ k
n )

 ∏
0≤k≤n−1

eiπ(x+ k
n )−iπ/2

∣∣∣∣∣∣
= log

∣∣∣(1− e−2iπnx)(eiπ(nx−1/2))
∣∣∣

= log
∣∣(eiπnx − e−iπnx)/i

∣∣
= log |2 sinπnx|

as we needed to show.

Proposition (G). The sum of any two replicative functions is replicative.
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Proof. Let f and g be replicative functions, h a function defined as

h(x) = f(x) + g(x),

and let n be an arbitrary positive integer. We must show that∑
0≤k≤n−1

h

(
x+

k

n

)
= h(nx).

But ∑
0≤k≤n−1

h

(
x+

k

n

)
=

∑
0≤k≤n−1

f

(
x+

k

n

)
+ g

(
x+

k

n

)

=
∑

0≤k≤n−1

f

(
x+

k

n

)
+

∑
0≤k≤n−1

g

(
x+

k

n

)
= f(xn) + g(xn)

= h(xn)

as we needed to show.

Proposition (H). A constant multiple of a replicative function is replicative.

Proof. Let f be a replicative function, c an arbitrary real number, g a function defined
as

g(x) = cf(x),

and let n be an arbitrary positive integer. We must show that∑
0≤k≤n−1

g

(
x+

k

n

)
= g(nx).

But ∑
0≤k≤n−1

g

(
x+

k

n

)
=

∑
0≤k≤n−1

cf

(
x+

k

n

)

= c
∑

0≤k≤n−1

f

(
x+

k

n

)
= cf(xn)

= g(xn)

as we needed to show.

Proposition (I). The function g(x) = f(x − bxc), where f(x) is replicative is itself
replicative.

Proof. Let f be a replicative function, g a function defined as

g(x) = f(x− bxc),

and let n be an arbitrary positive integer. We must show that∑
0≤k≤n−1

g

(
x+

k

n

)
= g(nx).
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Let k′ be the unique integer such that

{x}+
k′ − 1

n
< 1 ≤ {x}+

k′

n

so that k′ = dn(1− {x})e. Then∑
0≤k≤n−1

g

(
x+

k

n

)
=

∑
0≤k≤n−1

f

({
x+

k

n

})

=
∑

0≤k≤k′−1

f

({
x+

k

n

})
+

∑
k′≤k≤n−1

f

({
x+

k

n

})

=
∑

0≤k≤k′−1

f

(
{x}+

k

n

)
+

∑
k′≤k≤n−1

f

(
{x}+

k

n
− 1

)

=
∑

0≤k≤k′−1

f

(
{x}+

k

n

)
+

∑
k′≤k≤n−1

f

(
{x}+

k − n
n

)

=
∑

n−k′≤k≤n−1

f

(
{x}+

k′ − n+ k

n

)
+

∑
0≤k≤n−k′−1

f

(
{x}+

k′ − n+ k

n

)

=
∑

0≤k≤n−1

f

(
{x}+

k′ − n
n

+
k

n

)

= f

(
n

(
{x}+

k′ − n
n

))
= f (n{x}+ k′ − n)

= f (n{x}+ dn(1− {x})e − n)

= f (n{x}+ dn− n{x} − ne)
= f (n{x}+ d−n{x}e)
= f (n{x} − bn{x}c)
= f ({n{x}})
= f ({nx− nbxc})
= f ({nx− bnxc})
= f ({nx})
= f (nx− bnxc)
= g(nx)

as we needed to show.

40. [HM46 ] Study the class of replicative functions; determine all replicative functions of a special type. For
example, is the function in (a) of exercise 39 the only continuous replicative function? It may be interesting
to study also the more general class of functions for which

f(x) + f

(
x+

1

n

)
+ · · ·+ f

(
x+

n− 1

n

)
= anf(nx) + bn.

Here an and bn are numbers that depend on n but not on x. Derivatives and (if bn = 0) integrals of
these functions are of the same type. If we require that bn = 0, we have, for example, the Bernoulli
polynomials, the trigonometric functions cotπx and csc2 πx, as well as Hurwitz’s generalized zeta function
ζ(s, x) =

∑
k≥0 1/(k + x)s for fixed s. With bn 6= 0 we have still other well-known functions, such as the psi

function.

n.a.
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. . . For further results see L. J. Mordell, J. London Math. Soc. 33 (1958), 371–375.; M. F. Yoder,
Æquationes Mathematcæ 13 (1975), 251–261.

41. [M23 ] Let a1, a2, a3, . . . be the sequence 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, . . . ; find an expression for an in terms of
n, using the floor and/or ceiling function.

We want to find a kind of inverse of the sum of the first n integers. That is, we want to know
an = k such that ∑

1≤i≤k−1

i =
(k − 1)k

2
< n ≤ k(k + 1)

2
=
∑

1≤i≤k

i.

Solving for k yields

k − 1 <

√
8n+ 1− 1

2
≤ k

or equivalently

k = an =

⌈√
8n+ 1− 1

2

⌉
.

42. [M24 ] (a) Prove that

n∑
k=1

ak = nan −
n−1∑
k=1

k(ak+1 − ak), if n > 0.

(b) The preceding formula is useful for evaluating certain sums involving the floor function. Prove that, if b
is an integer ≥ 2,

n∑
k=1

blogb kc = (n+ 1)blogb nc − (bblogb nc+1 − b)/(b− 1).

Proposition (A).
∑

1≤k≤n ak = nan −
∑

1≤k≤n−1 k(ak+1 − ak) if n > 0.

Proof. Let n be an arbitrary integer such that n > 0. We must show that∑
1≤k≤n

ak = nan −
∑

1≤k≤n−1

k(ak+1 − ak).
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But ∑
1≤k≤n

ak =
∑

1≤k≤n

(1)ak

=
∑

1≤k≤n

(k − k + 1)ak

=
∑

1≤k≤n

kak − (k − 1)ak

= −
∑

1≤k≤n

(k − 1)ak +
∑

1≤k≤n

kak

= (0)a1 −
∑

2≤k≤n

(k − 1)ak +
∑

1≤k≤n

kak

= −
∑

2≤k≤n

(k − 1)ak +
∑

1≤k≤n

kak

= nan −
∑

2≤k≤n

(k − 1)ak +
∑

1≤k≤n−1

kak

= nan −
∑

1≤k≤n−1

kak+1 +
∑

1≤k≤n−1

kak

= nan −
∑

1≤k≤n−1

kak+1 − kak

= nan −
∑

1≤k≤n−1

k(ak+1 − ak)

as we needed to show.

Proposition (B).
∑

1≤k≤nblogb kc = (n+ 1)blogb nc− (bblogb nc+1− b)/(b−1) if b ≥ 2.

Proof. Let b be an arbitrary integer such that b ≥ 2. We must show that∑
1≤k≤n

blogb kc = (n+ 1)blogb nc − (bblogb nc+1 − b)/(b− 1).
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But from Proposition A, we have∑
1≤k≤n

blogb kc =
∑

1≤k≤n−1

blogb kc+
∑

n≤k≤n

blogb kc

=
∑

1≤k≤n−1

blogb kc+
∑

bblogb nc≤k≤n

blogb kc

=
∑

b0≤k<bblogb nc

blogb kc+
∑

bblogb nc≤k≤n

blogb kc

=
∑

0≤j<blogb nc

∑
bj≤k<bj+1

blogb kc+
∑

bblogb nc≤k≤n

blogb kc

=
∑

0≤j<blogb nc

j(bj+1 − bj) +
∑

bblogb nc≤k≤n

blogb kc

=

 ∑
0≤j<blogb nc

j(bj+1 − bj)

+ (n− bblogb nc + 1)blogb nc

= −

blogb ncbblogb nc −
∑

0≤j≤blogb nc−1

j(bj+1 − bj)

+ (n+ 1)blogb nc

= −

 ∑
0≤j≤blogb nc−1

bj+1

+ (n+ 1)blogb nc

= (n+ 1)blogb nc −
∑

1≤j≤blogb nc

bj

= (n+ 1)blogb nc − (bblogb nc+1 − b)/(b− 1)

as we needed to show.

43. [M23 ] Evaluate
∑n
k=1b
√
kc.
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We have by exercise 42∑
1≤k≤n

b
√
kc =

∑
1≤k≤n−1

b
√
kc+

∑
n≤k≤n

b
√
kc

=
∑

12≤k<bnc2
b
√
kc+

∑
b
√
nc2≤k≤n

b
√
kc

=
∑

1≤j<bnc

∑
j2≤k<(j+1)2

b
√
kc+

∑
b
√
nc2≤k≤n

b
√
kc

=
∑

1≤j<bnc

j((j + 1)2 − j2) +
∑

b
√
nc2≤k≤n

b
√
kc

=

 ∑
1≤j<bnc

j((j + 1)2 − j2)

+ (n− b
√
nc2 + 1)b

√
nc

= (n− b
√
nc2 + 1)b

√
nc+

 ∑
1≤j<bnc

j((j + 1)2 − j2)


= (n+ 1)b

√
nc −

b√ncb√nc2 −
 ∑

1≤j<bnc

j((j + 1)2 − j2)


= (n+ 1)b

√
nc −

∑
1≤k≤b

√
nc

k2

= (n+ 1)b
√
nc − b

√
nc(b
√
nc+ 1)(2b

√
nc+ 1)

6

= b
√
nc
(

(n+ 1)− (b
√
nc+ 1)(2b

√
nc+ 1)

6

)
= b
√
nc
(
n− (b

√
nc+ 1)(2b

√
nc+ 1)− 6

6

)
= b
√
nc
(
n− (2b

√
nc+ 5)(b

√
nc − 1)

6

)
.

44. [M24 ] Show that
∑
k≥0

∑
1≤j<bb(n+ jbk)/bk+1c = n, if b and n are integers, n ≥ 0, and b ≥ 2. What

is the value of this sum when n < 0?

We may prove the equality for nonnegative n.

Proposition.
∑
k≥0

∑
1≤j<b

⌊
n+jbk

bk+1

⌋
= n if b and n are integers, n ≥ 0, and b ≥ 2.

Proof. Let b and n be arbitrary integers such that n ≥ 0 and b ≥ 2. We must show
that ∑

k≥0

∑
1≤j<b

⌊
n+ jbk

bk+1

⌋
= n.
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By exercise 38 with x = n
bk+1 and y = b we have

∑
1≤j<b

⌊
n+ jbk

bk+1

⌋
=

 ∑
0≤j<b

bn+ jbk

bk+1
c

− ⌊ n

bk+1

⌋

=

 ∑
0≤j<b

⌊
n

bk+1
+
j

b

⌋− ⌊ n

bk+1

⌋
=

⌊
nb

bk+1
+
⌊ n

bk+1
+ 1
⌋

(dbe − b)
⌋
−
⌊ n

bk+1

⌋
=

⌊
nb

bk+1

⌋
−
⌊ n

bk+1

⌋
=
⌊ n
bk

⌋
−
⌊ n

bk+1

⌋
.

In the case that n > 0, for some arbitrary k⌊ n
bk

⌋
= 0 ⇐⇒ 0 ≤ n

bk
< 1

=⇒ n < bk

⇐⇒ logb n < logb b
k

⇐⇒ logb n < k

⇐⇒ k ≥ blogb nc+ 1.

Then∑
k≥0

∑
1≤j<b

⌊
n+ jbk

bk+1

⌋
=
∑
k≥0

⌊ n
bk

⌋
−
⌊ n

bk+1

⌋

=

 ∑
0≤k≤blogb nc

⌊ n
bk

⌋
−
⌊ n

bk+1

⌋+

 ∑
k≥blogb nc+1

⌊ n
bk

⌋
−
⌊ n

bk+1

⌋
=

 ∑
0≤k≤blogb nc

⌊ n
bk

⌋
−
⌊ n

bk+1

⌋+ 0

=
∑

0≤k≤blogb nc

⌊ n
bk

⌋
−

∑
0≤k≤blogb nc

⌊ n

bk+1

⌋
=
⌊ n
b0

⌋
+

∑
1≤k≤blogb nc

⌊ n
bk

⌋
−

∑
1≤k≤blogb nc+1

⌊ n
bk

⌋

=
⌊ n
b0

⌋
+

∑
1≤k≤blogb nc

⌊ n
bk

⌋
−

 ∑
1≤k≤blogb nc

⌊ n
bk

⌋− ⌊ n

bblogb nc+1

⌋
=
⌊ n
b0

⌋
+ 0−

⌊ n

bblogb nc+1

⌋
= n− 0

= n.

In the case that n = 0, then clearly∑
k≥0

∑
1≤j<b

⌊
0 + jbk

bk+1

⌋
=
∑
k≥0

⌊
0

bk

⌋
−
⌊

0

bk+1

⌋
= 0 = n.
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Hence, in either case ∑
k≥0

∑
1≤j<b

⌊
n+ jbk

bk+1

⌋
= n

as we needed to show.

When n < 0, we may find an arbitrary k such that⌊ n
bk

⌋
= −1 ⇐⇒ −1 ≤ n

bk
< 0

⇐⇒ 0 <
−n
bk
≤ 1

=⇒ −n ≤ bk

⇐⇒ logb−n ≤ logb b
k

⇐⇒ logb−n ≤ k
⇐⇒ k ≥ blogb−nc.

Then∑
k≥0

∑
1≤j<b

⌊
n+ jbk

bk+1

⌋
=
∑
k≥0

⌊ n
bk

⌋
−
⌊ n

bk+1

⌋

=

 ∑
0≤k≤blogb−nc−1

⌊ n
bk

⌋
−
⌊ n

bk+1

⌋+

 ∑
k≥blogb−nc

⌊ n
bk

⌋
−
⌊ n

bk+1

⌋
=

 ∑
0≤k≤blogb−nc−1

⌊ n
bk

⌋
−
⌊ n

bk+1

⌋+

 ∑
k≥blogb−nc

−1 + 1


=

 ∑
0≤k≤blogb−nc−1

⌊ n
bk

⌋
−
⌊ n

bk+1

⌋+ 0

=
∑

0≤k≤blogb−nc−1

⌊ n
bk

⌋
−

∑
0≤k≤blogb−nc−1

⌊ n

bk+1

⌋
=
⌊ n
b0

⌋
+

∑
1≤k≤blogb−nc−1

⌊ n
bk

⌋
−

∑
1≤k≤blogb−nc

⌊ n
bk

⌋

=
⌊ n
b0

⌋
+

∑
1≤k≤blogb−nc−1

⌊ n
bk

⌋
−

 ∑
1≤k≤blogb−nc−1

⌊ n
bk

⌋− ⌊ n

bblogb−nc

⌋
=
⌊ n
b0

⌋
+ 0−

⌊ n

bblogb−nc

⌋
= n+ 1.

I 45. [M28 ] The result of exercise 37 is somewhat surprising, since it implies that when m and n are
positive integers ∑

0≤k<n

⌊
mk + x

n

⌋
=

∑
0≤k<m

⌊
nk + x

m

⌋
.

This “reciprocity relationship” is one of many similar formulas (see Section 3.3.3). Show that for any function
f , we have ∑

0≤j<n

f

(⌊
mj

n

⌋)
=

∑
0≤r<m

⌈rn
m

⌉
(f(r − 1)− f(r)) + nf(m− 1).
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In particular, prove that ∑
0≤j<n

(
bmj/nc+ 1

k

)
+

∑
0≤j<m

⌊
jn

m

⌋(
j

k − 1

)
= n

(
m

k

)
.

[Hint: Consider the change of variable r = bmj/nc. Binomial coefficients
(
m
k

)
are discussed in Section

1.2.6.]

Proposition.
∑

0≤j<n f
(⌊
mj
n

⌋)
= nf(m−1)+

∑
0≤r<m

⌈
rn
m

⌉
(f(r−1)−f(r)) for any

function f and positive integers m and n.

Proof. Let f be any function and m and n arbitrary positive integers. We must show
that ∑

0≤j<n

f

(⌊
mj

n

⌋)
= nf(m− 1) +

∑
0≤r<m

⌈rn
m

⌉
(f(r − 1)− f(r)).

Note that ⌊
mj

n

⌋
= r ⇐⇒ r ≤ mj

n
< r + 1

⇐⇒ nr ≤ mj < n(r + 1)

⇐⇒ nr

m
≤ j < n(r + 1)

m

⇐⇒ nr

m
≤ j < n(r + 1)

m
.

⇐⇒
⌈nr
m

⌉
≤ j <

⌈
n(r + 1)

m

⌉
.

Then∑
0≤j<n

f

(⌊
mj

n

⌋)
=

∑
0≤r<m

∑
dnr

m e≤j<dn(r+1)
m e

f

(⌊
mj

n

⌋)

=
∑

0≤r<m

∑
dnr

m e≤j<dn(r+1)
m e

f(r)

=
∑

0≤r<m

(⌈
n(r + 1)

m

⌉
−
⌈nr
m

⌉)
f(r)

=
∑

0≤r<m

⌈
n(r + 1)

m

⌉
f(r)−

⌈nr
m

⌉
f(r)

=
∑

0≤r<m

⌈
n(r + 1)

m

⌉
f(r)−

∑
0≤r<m

⌈nr
m

⌉
f(r)

=
∑

1≤r<m+1

⌈nr
m

⌉
f(r − 1)−

∑
0≤r<m

⌈nr
m

⌉
f(r)

=
⌈nm
m

⌉
f(m− 1) +

⌈
n(0)

m

⌉
f(0− 1) +

∑
1≤r<m

⌈nr
m

⌉
f(r − 1)−

∑
0≤r<m

⌈nr
m

⌉
f(r)

= nf(m− 1) +
∑

0≤r<m

⌈nr
m

⌉
f(r − 1)−

∑
0≤r<m

⌈nr
m

⌉
f(r)

= nf(m− 1) +
∑

0≤r<m

⌈nr
m

⌉
(f(r − 1)− f(r))
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as we needed to show.

Proposition.
∑

0≤j<n
(bmj/nc+1

k

)
+
∑

0≤j<m
⌈
jn
m

⌉ (
j

k−1
)

= n
(
m
k

)
for any function f

and positive integers k, m, and n.

Proof. Let f be any function and k, m, and n arbitrary positive integers. We must
show that ∑

0≤j<n

(
bmj/nc+ 1

k

)
+

∑
0≤j<m

⌈
jn

m

⌉(
j

k − 1

)
= n

(
m

k

)
.

But by the preceding proposition for

f(x) =

(
x+ 1

k

)
we have that∑

0≤j<n

(
bmj/nc+ 1

k

)
= n

(
m

k

)
+

∑
0≤r<m

⌈rn
m

⌉((r
k

)
−
(
r + 1

k

))
;

and (
r + 1

k

)
=

(
r

k

)
+

(
r

k − 1

)
⇐⇒

(
r

k

)
−
(
r + 1

k

)
= −

(
r

k − 1

)
;

so ∑
0≤j<n

(
bmj/nc+ 1

k

)
= n

(
m

k

)
+

∑
0≤r<m

⌈rn
m

⌉((r
k

)
−
(
r + 1

k

))

= n

(
m

k

)
−

∑
0≤r<m

⌈rn
m

⌉( r

k − 1

)

= n

(
m

k

)
−

∑
0≤j<m

⌈
jn

m

⌉(
j

k − 1

)
.

Hence ∑
0≤j<n

(
bmj/nc+ 1

k

)
+

∑
0≤j<m

⌈
jn

m

⌉(
j

k − 1

)
= n

(
m

k

)
as we needed to show.

46. [M29 ] (General reciprocity law.) Extend the formula of exercise 45 to obtain an expression for∑
0≤j<αn f(bmj/nc), where α is any positive real number.

For any positive real number α, since by the first proposition of exercise 45⌊
mj

n

⌋
= r ⇐⇒

⌈rn
m

⌉
≤ j <

⌈
(r + 1)n

m

⌉
,
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we have∑
0≤j<αn

f

(⌊
mj

n

⌋)
=

∑
0≤r<αm

∑
d rn

m e≤j<d (r+1)n
m e

f

(⌊
mj

n

⌋)

=
∑

0≤r<αm

∑
d rn

m e≤j<d (r+1)n
m e

f(r)

=
∑

0≤r<αm

(⌈
(r + 1)n

m

⌉
−
⌈rn
m

⌉)
f(r)

=
∑

0≤r<αm

⌈
(r + 1)n

m

⌉
f(r)−

⌈rn
m

⌉
f(r)

=
∑

0≤r<αm

⌈
(r + 1)n

m

⌉
f(r)−

∑
0≤r<αm

⌈rn
m

⌉
f(r)

=
∑

1≤r<αm+1

⌈rn
m

⌉
f(r − 1)−

∑
0≤r<αm

⌈rn
m

⌉
f(r)

= dαnm
m
ef(dαme − 1) +

⌈
(0)n

m

⌉
f(0− 1) +

∑
1≤r<αm

⌈rn
m

⌉
f(r − 1)−

∑
0≤r<αm

⌈rn
m

⌉
f(r)

= dαnef(dαme − 1) +
∑

0≤r<αm

⌈rn
m

⌉
f(r − 1)−

∑
0≤r<αm

⌈rn
m

⌉
f(r)

= dαnef(dαme − 1) +
∑

0≤r<αm

⌈rn
m

⌉
(f(r − 1)− f(r)).

I 47. [M31 ] When p is an odd prime number, the Legendre symbol
(
q
p

)
is defined to be +1, 0, or −1,

depending on whether q(p−1)/2 mod p is 1, 0, or p − 1. (Exercise 26 proves that these are the only possible
values.)

a) Given that q is not a multiple of p, show that the numbers

(−1)b2kq/pc(2kq mod p), 0 < k < p/2,

are congruent in some order to the numbers 2, 4, . . . , p− 1 (modulo p). Hence
(
q
p

)
= (−1)σ

where σ =
∑

0≤k<p/2b2kq/pc.

b) Use the result of (a) to calculate
(

2
p

)
.

c) Given that q is odd, show that
∑

0≤k<p/2b2kq/pc ≡
∑

0≤k<p/2bkq/pc (modulo 2) unless q

is a multiple of p. [Hint: Consider the quantity b(p− 1− 2k)q/pc.]

d) Use the general reciprocity formula of exercise 46 to obtain the law of quadratic reciprocity,(
q
p

)(
p
q

)
= (−1)(p−1)(q−1)/4, given that p and q are distinct odd primes.

Answers to exercise 47 follow below.

(a) We may prove the congruence relation in order to deduce that
(
q
p

)
= (−1)

∑
0≤k<p/2b2kq/pc

if p 6⊥ q, p an odd prime.

Proposition (A).
∏

0<k<p/2(−1)b2kq/pc(2kq mod p) ≡
∏

0<k<p/2 2k (mod p) if p 6⊥
q, p an odd prime.
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Proof. Let p and q be arbitrary integers such that p 6⊥ q and p an odd prime. We
must show that∏

0<k<p/2

(−1)b2kq/pc(2kq mod p) ≡
∏

0<k<p/2

2k (mod p).

Let k be an arbitrary integer such that 0 < k < p/2. Then

2kq = p

⌊
2kq

p

⌋
+ (2kq) mod p

or equivalently
(2kq mod p) ≡ 2kq (mod p).

Since p 6⊥ q, q ≡ 1 (mod p), and so

(2kq mod p) ≡ 2k (mod p).

Also, in the case that
⌊
2kq
p

⌋
is even, then so is 2kq mod p, and

(−1)b2kq/pc(2kq mod p) ≡ 2kq mod p (mod p)

=⇒ (−1)b2kq/pc(2kq mod p) ≡ 2kq (mod p);

in the case that
⌊
2kq
p

⌋
is odd, then so is 2kq mod p since p is an odd prime, and

(−1)b2kq/pc(2kq mod p) ≡ 2kq − p (mod p)

=⇒ (−1)b2kq/pc(2kq mod p) ≡ 2kq (mod p);

and in either case

(−1)b2kq/pc(2kq mod p) ≡ 2k (mod p).

Hence, ∏
0<k<p/2

(−1)b2kq/pc(2kq mod p) ≡
∏

0<k<p/2

2k (mod p)

as we needed to show.

(b) In order to calculate
(

2
p

)
, we let q = 2 and p be an odd prime. Then(

2

p

)
= (−1)

∑
0≤k<p/2b4k/pc

has solutions for p = 4n + 1 or 4n + 3 for some integer n; in particular, (−1, 1, 1,−1) for
p ≡ (1, 3, 5, 7) (mod 8), respectively; or expressed as the formula(

2

p

)
= (−1)b

p+2
4 c.

(c) We may show the relation.



Exercises from Section 1.2.4 48

Proposition (C).
∑

0≤k<p/2b2kq/pc ≡
∑

0≤k<p/2bkq/pc (mod 2) if q odd and p 6⊥
q.

Proof. Let p and q be arbitrary integers such that p is an odd prime, p 6⊥ q, and q
odd. We must show that∑

0≤k<p/2

b2kq/pc ≡
∑

0≤k<p/2

bkq/pc. (mod 2)

But ∑
0≤k<p/2

b2kq/pc =
∑

0≤k<p/4

b2kq/pc+
∑

p/4≤k<p/2

b2kq/pc

=
∑

0≤k<p/4

b2kq/pc+
∑

−1/2<k≤(p−2)/4

b2(
p− 1

2
− k)q/pc

=
∑

0≤k<p/4

b2kq/pc+
∑

0≤k<p/4

b2(
p− 1

2
− k)q/pc

=
∑

0≤k<p/4

b2kq/pc+
∑

0≤k<p/4

b(p− 1− 2k)q/pc

=
∑

0≤k<p/4

b2kq/pc+
∑

0≤k<p/4

q − d(2k + 1)q/pe

=
∑

0≤k<p/4

b2kq/pc+
∑

0≤k<p/4

q − 1− b(2k + 1)q/pc.

Then, since p 6⊥ q and q odd∑
0≤k<p/2

b2kq/pc ≡
∑

0≤k<p/4

b2kq/pc+
∑

0≤k<p/4

q − 1− b(2k + 1)q/pc

≡
∑

0≤k<p/4

b2kq/pc+
∑

0≤k<p/4

b(2k + 1)q/pc

≡
∑

0≤k<p/2

bkq/pc (mod 2)

as we needed to show.

(d) We may use the general reciprocity formula of exercise 46 to obtain the law of quadratic
reciprocity.

Proposition (D).
(
q
p

)(
p
q

)
= (−1)(p−1)(q−1)/4 if p and q are distinct odd primes.

Proof. Let p and q be arbitrary integers such that p and q are distinct odd primes.
We must show that (

q

p

)(
p

q

)
= (−1)(p−1)(q−1)/4.
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From exercise 46∑
0≤k<p/2

⌊
kq

p

⌋
= dp/2e(dq/2e − 1) +

∑
0≤r<q/2

⌈
pr

q

⌉
((r − 1)− r)

=
(p+ 1)(q − 1)

4
−

∑
0≤r<q/2

⌈
pr

q

⌉

=
(p+ 1)(q − 1)

4
− q − 1

2
−

∑
0≤r<q/2

⌊
pr

q

⌋

=
(p− 1)(q − 1)

4
−

∑
0≤r<q/2

⌊
pr

q

⌋
.

Then, since∑
0≤k<p/2

⌊
2kq

p

⌋
+

∑
0≤k<q/2

⌊
2kp

q

⌋
≡

∑
0≤k<p/2

⌊
kq

p

⌋
+

∑
0≤k<q/2

⌊
kp

q

⌋

≡ (p− 1)(q − 1)

4
(mod 2)

we have (
q

p

)(
p

q

)
= (−1)

∑
0≤k<p/2b2kq/pc+

∑
0≤k<q/2b2kp/qc

= (−1)(p−1)(q−1)/4

as we needed to show.

. . . The idea of this proof goes back to G. Eisenstein, Crelle 28 (1844), 246–248; Eisenstein also
gave several other proofs of this and other reciprocity laws in the same volume.

48. [M26 ] Prove or disprove the following identities, for integers m and n:

(a)

⌊
m+ n− 1

n

⌋
=
⌈m
n

⌉
; (b)

⌊
n+ 2− bn/25c

3

⌋
=

⌊
8n+ 24

25

⌋
.

Some but not all of the identities may be proven.

(a) The identity ⌊
m+ n− 1

n

⌋
=
⌈m
n

⌉
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may be disproven by counterexample. Let m = 0 and n = −1. Then⌊
m+ n− 1

n

⌋
=

⌊
0 +−1− 1

−1

⌋
=

⌊
−2

−1

⌋
= b2c
= b2c
= 2

6= 0

= d0e

=

⌈
0

−1

⌉
=
⌈m
n

⌉
.

Note, however, that we may prove the identity in the case that n > 0.

Proposition (A).
⌊
m+n−1

n

⌋
=
⌈
m
n

⌉
if n > 0.

Proof. Let m and n be arbitrary integers such that n > 0. We must show
that ⌊

m+ n− 1

n

⌋
=
⌈m
n

⌉
.

But since n > 0 implies n−1
n < 1,

f(x) = c(x)− 1

⌊
m+ n− 1

n

⌋
=

⌊
m

n
+
n− 1

n

⌋
=
⌈m
n

⌉

as we needed to show.

(b) The second identity may be proven.

Proposition (B).
⌊
n+2−bn/25c

3

⌋
=
⌊
8n+24

25

⌋
.

Proof. Let n be an arbitrary integer. We must show that⌊
n+ 2− bn/25c

3

⌋
=

⌊
8n+ 24

25

⌋
.
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But ⌊
n+ 2− bn/25c

3

⌋
=

⌈
n− bn/25c

3

⌉
=

⌈
n+ d−n/25e

3

⌉
=

⌈
d24n/25e

3

⌉
=

⌈
8n

25

⌉
=

⌈
8n+ 24

25

⌉

as we needed to show.

49. [M30 ] Suppose the integer-valued function f(x) satisfies the two simple laws (i) f(x+1) = f(x)+1; (ii)
f(x) = f(f(nx)/n) for all positive integers n. Prove that either f(x) = bxc for all rational x, or f(x) = dxe
for all rational x.

We may prove the result.

Proposition. If an integer-valued function f(x) satisfies f(x + 1) = f(x) + 1 and
f(x) = f(f(nx)/n) for all positive integers n, either (∀x ∈ Q) (f(x) = bxc) or (∀x ∈
Q) (f(x) = dxe).

Proof. Let f be an integer-valued function such that

f(x+ 1) = f(x) + 1

and
f(x) = f(f(nx)/n).

We must show that either
(∀x ∈ Q) (f(x) = bxc)

or
(∀x ∈ Q (f(x) = dxe) .

First, we consider the domain of integers. From

f(0) = f(f((1)0)/1) = f(f(0))

we may deduce that f(0) = 0. Then, from the inductive hypotheses f(k) = k and
f(−k) = −k for an arbitrary integer k ≥ 0, we are able to show that f(k+1) = f(k)+1
and f(1−k) = f(−k)+1 respectively, proving by mathematical induction that f(n) = n
for all integers n.

Second, we consider the domain of rationals. If f
(
1
2

)
≤ 0, we have

f

(
1

2

)
= f

(
1

1− 2f(1/2)
f

(
1

2
(1− 2f(1/2))

))
= f

(
1

1− 2f(1/2)
f

(
1

2
− f

(
1

2

)))
= f

(
1

1− 2f(1/2)
f

(
f

(
1

2

)
− f

(
1

2

)))
= f(0)

= 0;
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also, if f
(

1
n−1

)
= 0, we have

f

(
1

n− 1

)
= f

(
1

n
f

(
n

n− 1

))
= f

(
1

n
f

(
1 +

1

n− 1

))
= f

(
1

n

(
1 + f

(
1

n− 1

)))
= f

(
1

n
(1 + 0)

)
= f

(
1

n

)
= 0;

and furthermore, if 1 ≤ m < n, by induction on m and since mdn/me − n ≤ 0,

f
(m
n

)
= f

(
1

dn/me
f

(
dn/mem

n

))
= f

(
1

dn/me
f

(
dn/mem+ n− n

n

))
= f

(
1

dn/me
f

(
dn/mem+ n− nm/m

n

))
= f

(
1

dn/me
f

(
n+m (dn/me − n/m)

n

))
= f

(
1

dn/me
f
(

1 +
m

n

(⌈ n
m

⌉
− n

m

)))
= f

(
1

dn/me

(
1 + f

(m
n

(⌈ n
m

⌉
− n

m

))))
= f

(
1

dn/me

(
1 + f

(
1

n
(m dn/me − n)

)))
= f

(
1

dn/me
(1 + 0)

)
= f

(
1

dn/me

)
= 0.

Therefore, in the case that f
(
1
2

)
≤ 0, (∀x ∈ Q) (f(x) = bxc).

On the other hand, in the case that f
(
1
2

)
> 0, we may define f ′(x) = −f(−x) so that
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f ′(x+ 1) = f ′(x) + 1 and f ′(x) = f ′(f ′(nx)/n), and

f ′
(

1

2

)
= f ′

(
1

2

)
− 1 + 1

= f ′
(

1

2
− 1

)
+ 1

= −f
(
−1

2
+ 1

)
+ 1

= 1− f
(

1

2

)
≤ 0.

Therefore, f ′(x) = −f(−x) = −b−xc = dxe; that is, in the case that f
(
1
2

)
> 0,

(∀x ∈ Q) (f ′(x) = dxe).

Hence, either (∀x ∈ Q) (f(x) = bxc) or (∀x ∈ Q) (f ′(x) = dxe), as we needed to show.

[P. Eisele and K. P. Hadeler, AMM 97 (1990), 475–477.]

[G. Hamel, Math. Annalen 60 (1905), 459–462.]


