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1. [00 ] How many ways are there to shuffle a 52-card deck?

As we have 52 choices for the first card, 51 for the second, and so on, we simply have 52! ways to
shuffle a 52-card deck. 52! is the 68 decimal digit number

80658175170943878571660636856403766975289505440883277824000000000000.

2. [10 ] In the notation of Eq. (2), show that pn(n−1) = pnn, and explain why this happens.

In the notation of Eq. (2), since

pnk =
∏

n−k+1≤j≤n

j

we have that
pnn =

∏
1≤j≤n

j =
∏

2≤j≤n

j =
∏

n−(n−1)+1≤j≤n

j = pn(n−1).

That is, after choosing the (n− 1)th element, we have no choice left for the last element.

3. [10 ] What permutations of {1, 2, 3, 4, 5} would be constructed from the permutation 3 1 2 4 using Methods
1 and 2, respectively?

We can construct permutations of the set {1, 2, 3, 4, 5} from the permutation 3 1 2 4 using either
method.

In Method 1, we insert 5 in all possible positions to obtain

5 3 1 2 4, 3 5 1 2 4, 3 1 5 2 4, 3 1 2 5 4, and 3 1 2 4 5.

In Method 2, we start with an intermediary set of permutations

3 1 2 4 1
2 , 3 1 2 4 3

2 , 3 1 2 4 5
2 , 3 1 2 4 7

2 , and 3 1 2 4 9
2 ,

which are finally renamed as

4 2 3 5 1, 4 1 3 5 2, 4 1 2 5 3, 3 1 2 5 4, and 3 1 2 4 5.

I 4. [13 ] Given the fact that log10 1000! = 2567.60464 . . . , determine exactly how many decimal digits are
present in the number 1000!. What is the most significant digit? What is the least significant digit?

Since the number of decimal digits in a number n is given by blog10 nc + 1, log10 1000! =
2567.60464 . . . implies that 1000! has 2568 decimal digits.

The most significant digit is given by
⌊

1000!
102568−1

⌋
, but since log10 4 = 0.60206 . . . and log10 5 =

1
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0.69897 . . . ,

log10 1000! = 2567.60464 . . . =⇒ 2567 + log10 4 ≤ log10 1000! < 2567 + log10 5

=⇒ log10 102567 + log10 4 ≤ log10 1000! < log10 102567 + log10 5

=⇒ log10

(
4 · 102567

)
≤ log10 1000! < log10

(
5 · 102567

)
=⇒ log10 4 ≤ log10

1000!

102567
< log10 5

=⇒ 4 ≤ 1000!

102568−1
< 5,

and so, the most significant digit is
⌊

1000!
102568−1

⌋
= 4.

The least significant digit is intuitively 0, since the factorial is some number multiplied by a factor
of 1000. We can determine precisely how many zeros using Eq. (8), since

µ2 =
∑
k>0

⌊
1000

2k

⌋
=
∑

1≤k≤9

⌊
1000

2k

⌋
= 500 + 250 + 125 + 62 + 31 + 15 + 7 + 3 + 1

= 994

and

µ5 =
∑
k>0

⌊
1000

5k

⌋
=
∑

1≤k≤4

⌊
1000

5k

⌋
= 200 + 40 + 8 + 1

= 249

giving us that for some arbitrary integer z not divisible by 10, 1000! = 2994 · 5249z = 2745z · 10249;
that is, 1000! is a number that ends with 249 zeros.

[Scripta Mathematica 21 (1955), 266–267]

5. [15 ] Estimate 8! using the more exact version of Stirling’s approximation:

n! ≈
√

2πn
(n
e

)n(
1 +

1

12n

)
.

We may estimate 8! as

8! ≈
√

2π8

(
8

e

)8(
1 +

1

12(8)

)
= 4
√
π

16777216

e8

97

96

=
203423744

√
π

3e8

≈ 40318.
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I 6. [17 ] Using Eq. (8), write 20! as a product of prime factors.

Since the primes that divide 20 are 2, 3, 5, 7, 11, 13, 17, and 19, we may determine the multiplicity
of the prime factors of 20! as

µ2 =
∑
k>0

⌊
20

2k

⌋
=
∑

1≤k≤4

⌊
20

2k

⌋
= 10 + 5 + 2 + 1

= 18,

µ3 =
∑
k>0

⌊
20

2k

⌋
=
∑

1≤k≤2

⌊
20

2k

⌋
= 6 + 2

= 8,

µ5 =
∑
k>0

⌊
20

5k

⌋
=
∑

1≤k≤1

⌊
20

5k

⌋
= 4,

µ7 =
∑
k>0

⌊
20

7k

⌋
=
∑

1≤k≤1

⌊
20

7k

⌋
= 2,

µ11 =
∑
k>0

⌊
20

11k

⌋
=
∑

1≤k≤1

⌊
20

11k

⌋
= 1,
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µ13 =
∑
k>0

⌊
20

13k

⌋
=
∑

1≤k≤1

⌊
20

13k

⌋
= 1,

µ17 =
∑
k>0

⌊
20

17k

⌋
=
∑

1≤k≤1

⌊
20

17k

⌋
= 1,

and

µ19 =
∑
k>0

⌊
20

19k

⌋
=
∑

1≤k≤1

⌊
20

19k

⌋
= 1,

so that 20! = 218 · 38 · 54 · 72 · 11 · 13 · 17 · 19.

7. [M10 ] Show that the “generalized terminal” function in Eq. (10) satisfies the identity x? = x+ (x− 1)?
for all real numbers x.

Proposition. x? = x+ (x− 1)? for all real numbers x.

Proof. Let x be an arbitrary real number. We must show that

x? = x+ (x− 1)?.

But by Eq. (10)

x? =
1

2
x(x+ 1)

= x− x+
1

2
x(x+ 1)

= x+
−2x

2
+

1

2
x(x+ 1)

= x+
1

2
(x2 + x− 2x)

= x+
1

2
(x2 − x)

= x+
1

2
(x− 1)x

= x+
1

2
(x− 1)((x− 1) + 1)

= x+ (x− 1)?
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as we needed to show.

8. [HM15 ] Show that the limit in Eq. (13) does equal n! when n is a nonnegative integer.

When n is a nonnegative integer, we have

lim
m→∞

mnm!∏
1≤k≤m(n+ k)

= lim
m→∞

mnm!

(n+m)!/n!

= lim
m→∞

n!mnm!

(m+ n)!

= lim
m→∞

n!mn

(m+ n)!/m!

= lim
m→∞

n!mn∏
1≤k≤n(m+ k)

= lim
m→∞

n!
∏

1≤k≤n

m

m+ k

= n! lim
m→∞

∏
1≤k≤n

m

m+ k

= n!.

9. [M10 ] Determine the values of Γ( 1
2 ) and Γ(− 1

2 ), given that
(

1
2

)
! =
√
π/2.

Given that
(

1
2

)
! =
√
π/2, we have that

Γ

(
1

2

)
=

(
1

2

)
!/

(
1

2

)
=

√
π

2

2

1
=
√
π

and that

Γ

(
−1

2

)
=

2

−1
Γ

(
1

2

)
= −2

√
π

since Γ(n+ 1) = nΓ(n).

I 10. [HM20 ] Does the identity Γ(x+ 1) = xΓ(x) hold for all real numbers x? (See exercise 7.)

The identity Γ(x + 1) = xΓ(x) holds for all real numbers x, except when x is zero or a negative
integer, since

Γ(x+ 1) = lim
m→∞

mxm!∏
1≤k≤m(x+ k)

= lim
m→∞

mx(x+m)

x(x+m)

mx−1m!∏
2≤k≤m+1((x− 1) + k)

= lim
m→∞

mx

x+m

mx−1m!∏
1≤k≤m((x− 1) + k)

= x lim
m→∞

m

m+ x

mx−1m!∏
1≤k≤m((x− 1) + k)

= x lim
m→∞

mx−1m!∏
1≤k≤m((x− 1) + k)

= xΓ(x).
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11. [M15 ] Let the representation of n in the binary system be n = 2e1 + 2e2 + · · · + 2er , where e1 > e2 >
· · · > er ≥ 0. Show that n! is divisible by 2n−r but not by 2n−r+1.

Given n =
∑

1≤j≤r 2ej , we may find the exact multiplicity of the prime factor 2 from Eq. (8) as:

µ =
∑
i>0

⌊ n
2i

⌋
=
∑

1≤i≤r

⌊∑
1≤j≤r 2ej

2ei

⌋

=
∑

1≤i≤r

 ∑
0≤j≤r

2ej

2ei


=
∑

1≤j≤r

∑
1≤i≤j

2ej

2ei

=
∑

1≤j≤r

2ej
∑

1≤i≤j

1

2ei

=
∑

1≤j≤r

2ej
2−ej (2ej − 1)

2− 1

=
∑

1≤j≤r

2ej

2ej
(2ej − 1)

=
∑

1≤j≤r

(2ej − 1)

=
∑

1≤j≤r

2ej −
∑

0≤j≤r

1

= n−
∑

1≤j≤r

1

= n− r.

That is, n! is divisible by 2n−1, but not by 2n−r+1.

I 12. [M22 ] (A. Legendre, 1808.) Generalizing the result of the previous exercise, let p be a prime number,
and let the representation of n in the p-ary number system be n = akp

k +ak−1p
k−1 + · · ·+a1p+a0. Express

the number µ of Eq. (8) in a simple formula involving n, p, and a’s.
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Given n =
∑

0≤j≤k ajp
j , we may express the number µ from Eq. (8) as:

µ =
∑
i>0

⌊
n

pi

⌋

=
∑

1≤i≤k

⌊∑
0≤j≤k ajp

j

pi

⌋

=
∑

1≤i≤k

 ∑
0≤j≤k

ajp
j

pi


=
∑

0≤j≤k

∑
1≤i≤j

ajp
j

pi

=
∑

0≤j≤k

ajp
j
∑

1≤i≤j

1

pi

=
∑

0≤j≤k

ajp
j p
−j(pj − 1)

p− 1

=
∑

0≤j≤k

aj
pj

pj
pj − 1

p− 1

=
∑

0≤j≤k

aj
pj − 1

p− 1

=

∑
0≤j≤k aj(p

j − 1)

p− 1

=

∑
0≤j≤k ajp

j −
∑

0≤j≤k aj

p− 1

=
n−

∑
0≤j≤k aj

p− 1
.

13. [M23 ] (Wilson’s theorem, actually due to Leibniz, 1682.) If p is prime, then (p − 1)! mod p = p − 1.
Prove this, by pairing off numbers among {1, 2, . . . , p− 1} whose product modulo p is 1.

Proposition. If p is prime, (p− 1)! mod p = p− 1.

Proof. Let p be an arbitrary prime. We must show that

(p− 1)! mod p = p− 1.

By exercise 1.2.4-19, for each integer k, 1 < k < p− 1, there is another integer k′ such
that

kk′ ≡ 1 (mod p)

allowing us to ’pair off numbers’ as

(p− 2)!/1! ≡ 1 (mod p).

Also, clearly,
1 ≡ 1 (mod p)

and
(p− 1) ≡ p− 1 (mod p).

And so,
(p− 1)! ≡ p− 1 (mod p)
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or equivalently
(p− 1)! mod p = p− 1

as we needed to show.

I 14. [M28 ] (L. Stickelberger, 1890.) In the notation of exercise 12, we can determine n! mod p in terms of
the p-ary representation, for any positive integer n, thus generalizing Wilson’s theorem. In fact, prove that
n!/pµ ≡ (−1)µa0!a1! . . . ak! (modulo p).

Proposition. n!/pµ ≡ (−1)µ
∏

0≤i≤k ai! (mod p).

Proof. Let n and p be arbitrary positive integers such that p is prime, n =
∑

0≤i≤k aip
i,

and µ =
∑

1≤j≤k

⌊
n
pj

⌋
. We must show that

n!/pµ ≡ (−1)µ
∏

0≤i≤k

ai! (mod p).

First consider the trivial case k = 0, so that n = a0 and µ = 0. Then clearly

a0! ≡ a0! (mod p) ⇐⇒ a0!/p0 ≡ (−1)0
∏

0≤i≤0

ai! (mod p)

⇐⇒ n!/pµ ≡ (−1)µ
∏

0≤i≤k

ai! (mod p).

Then, assuming as an inductive hypothesis for nk =
∑

0≤i≤k aip
i and µk =

∑
1≤i≤k

⌊
nk

pi

⌋
that

nk!/pµk ≡ (−1)µk

∏
0≤i≤k

ai! (mod p),

we must show for nk+1 = ak+1p
k+1 + nk and µk+1 =

⌊
nk+1

pk+1

⌋
+ µk that

nk+1!/pµk+1 ≡ (−1)µk+1

∏
0≤i≤k+1

ai! (mod p).

(Note that the equality for µk+1 holds since nk+1 has grown by a multiple of p; namely,
ak+1p

k.)

But by Wilson’s theorem, all the terms between nk +1 and nk+1 that are not multiples
of p may be collected into sets of size p− 1 whose product is congruent to −1 modulo

p, and there are precisely
⌊
nk+1

pk+1

⌋
of these products, with ak+1 left over, congruent to

ak+1! modulo p. That is∏
nk+1≤i≤nk+1

i

/
p

⌊
nk+1

pk+1

⌋
≡ (−1)

⌊
nk+1

pk+1

⌋
ak+1! (mod p).

Multiplying this by the inductive hypothesis yields ∏
nk+1≤i≤nk+1

i

/
p

⌊
nk+1

pk+1

⌋nk!/pµk ≡ (−1)

⌊
nk+1

pk+1

⌋
ak+1!(−1)µk

∏
0≤i≤k

ai! (mod p)

⇐⇒ nk!
∏

nk+1≤i≤nk+1

i

/
p

⌊
nk+1

pk+1

⌋
+µk ≡ (−1)

⌊
nk+1

pk+1

⌋
+µkak+1!

∏
0≤i≤k

ai! (mod p)

⇐⇒ nk+1!/pµk+1 ≡ (−1)µk+1

∏
0≤i≤k+1

ai! (mod p).
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Therefore
n!/pµ ≡ (−1)µ

∏
0≤i≤k

ai! (mod p)

as we needed to show.

15. [HM15 ] The permanent of a square matrix is defined by the same expansion as the determinant except
that each term of the permanent is given a plus sign while the determinant alternates between plus and
minus. Thus the permanent of a b c

d e f
g h i


is aei+ bfg + cdh+ gec+ hfa+ idb. What is the permanent of

1× 1 1× 2 . . . 1× n
2× 1 2× 2 . . . 2× n

...
...

. . .
...

n× 1 n× 2 . . . n× n

 ?

The permanent of a square matrix may be defined recursively as

perm([aij ]n) =

{
a11 if n = 1∑

1≤j≤n aij + perm(submatrix(aij)) otherwise.

In the case that aij = i× j, we may simply add

(1× 1) + (2× 2) + · · ·+ (n× n) = (n!)2,

and we do this for n! terms, yielding a total sum of

n!(n!)2 = (n!)3.

16. [HM15 ] Show that the infinite sum in Eq. (11) does not converge unless n is a nonnegative integer.

The infinite sum in Eq. (11),

∑
k≥0

 ∑
0≤j≤k

(−1)j

j!

 ∏
0≤j<k

(n− j)

 ,

does not converge unless n is a nonnegative integer, since if n < 0, the product
∏

0≤j<k(n − j)
never vanishes as the coefficients

lim
k→∞

∑
0≤j≤k

(−1)j

j!
=

1

e
.

(In the case that n ≥ 0, the product eventually vanishes with a factor of zero.)

17. [HM20 ] Prove that the infinite product∏
n≥1

(n+ α1) . . . (n+ αk)

(n+ β1) . . . (n+ βk)

equals Γ(1 + β1) . . .Γ(1 + βk)/Γ(1 + α1) . . .Γ(1 + αk), if α1 + · · ·+ αk = β1 + · · ·+ βk and if none of the β’s
is a negative integer.

Proposition.
∏
n≥1

∏
1≤i≤k

n+αi

n+βi
=
∏

1≤i≤k
Γ(1+βi)
Γ(1+αi)

if
∑

1≤i≤k αi =
∑

1≤i≤k βi and

βi ≥ 0 for 1 ≤ i ≤ k.
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Proof. Let αi and βi be arbitrary integer sequences such that
∑

1≤i≤k αi =
∑

1≤i≤k βi
and βi ≥ 0 for 1 ≤ i ≤ k. We must show that∏

n≥1

∏
1≤i≤k

n+ αi
n+ βi

=
∏

1≤i≤k

Γ(1 + βi)

Γ(1 + αi)
.

But ∏
1≤i≤k

Γ(1 + βi)

Γ(1 + αi)
= lim
m→∞

∏
1≤i≤k

m1+βim!
∏

0≤j≤m(1 + αi + j)

m1+αim!
∏

0≤j≤m(1 + βi + j)

= lim
m→∞

∏
1≤i≤k

mβi
∏

0≤j≤m(1 + αi + j)

mαi
∏

0≤j≤m(1 + βi + j)

= lim
m→∞

m
∑

1≤i≤k βi

m
∑

1≤i≤k αi

∏
1≤i≤k

∏
0≤j≤m(1 + αi + j)∏
0≤j≤m(1 + βi + j)

= lim
m→∞

∏
1≤i≤k

∏
0≤j≤m

1 + αi + j

1 + βi + j

= lim
m→∞

∏
0≤j≤m

∏
1≤i≤k

1 + αi + j

1 + βi + j

= lim
m→∞

∏
1≤n≤m

∏
1≤i≤k

n+ αi
n+ βi

=
∏
n≥1

∏
1≤i≤k

n+ αi
n+ βi

as we needed to show.

18. [M20 ] Assume that π/2 = 2
1 ·

2
3 ·

4
3 ·

4
5 ·

6
5 ·

6
7 · · · · . (This is “Wallis’s product,” obtained by J. Wallis in

1655, and we will prove it in exercise 1.2.6-43.) Using the previous exercise, prove that
(

1
2

)
! =
√
π/2.

Proposition.
(

1
2

)
! =
√
π/2.

Proof. We must show that (
1

2

)
! =
√
π/2.

But according to exercise 17 with α1 = α2 = 0, β1 = −1/2, and β2 = 1/2 so that
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∑
1≤i≤2 αi =

∑
1≤i≤2 βi and βi ≥ 0 for 1 ≤ i ≤ 2,

√
π

2
=

√
1

2

π

2

=

√
1

2

∏
n≥1

2n

2n− 1

2n

2n+ 1

=

√
1

2

∏
n≥1

n

n− 1
2

n

n+ 1
2

=

√
1

2

∏
n≥1

n+ α1

n+ β1

n+ α2

n+ β2

=

√
1

2

∏
n≥1

∏
1≤k≤2

n+ αk
n+ βk

=

√√√√1

2

∏
1≤k≤2

Γ(1 + βk)

Γ(1 + αk

=

√√√√1

2

∏
1≤k≤2

Γ(1 + βk)

Γ(1 + αk)

=

√
1

2

Γ (1 + β1)

Γ (1 + α1)

Γ (1 + β2)

Γ (1 + α2)

=

√
1

2

Γ
(
1− 1

2

)
Γ (1)

Γ
(
1 + 1

2

)
Γ (1)

=

√
1

2

Γ
(

1
2

)
Γ (1)

Γ
(

3
2

)
Γ (1)

=

√
1

2
Γ

(
1

2

)
Γ

(
3

2

)

=

√
2

2
Γ

(
3

2

)
Γ

(
3

2

)

=

√
Γ

(
3

2

)2

= Γ

(
3

2

)
=

(
1

2

)
!

as we needed to show.

[Wallis’s own heuristic “proof” can be found in D. J. Struik’s Source Book in Mathematics (Har-
vard University Press, 1969), 244–253.]

19. [HM22 ] Denote the quantity appearing after “limm→∞” in Eq. (15) by Γm(x). Show that

Γm(x) =

∫ m

0

(
1− t

m

)m
tx−1dt = mx

∫ 1

0

(1− t)mtx−1dt, if x > 0.
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Proposition. Γm(x) =
∫m

0

(
1− t

m

)m
tx−1dt = mx

∫ 1

0
(1− t)mtx−1dt if x > 0.

Proof. Let x be an arbitrary positive real number so that x > 0. We must show that

Γm(x) =

∫ m

0

(
1− t

m

)m
tx−1dt = mx

∫ 1

0

(1− t)mtx−1dt.

But by substituting mt for t∫ m

0

(
1− t

m

)m
tx−1dt =

∫ t/t

0

(
1− mt

m

)m
(mt)x−1dmt

=

∫ 1

0

(1− t)mmxtx−1dt

= mx

∫ 1

0

(1− t)m tx−1dt.

Then, let

fm(x) =

∫ 1

0

(1− t)m tx−1dt.

We may prove by induction on m that

fm(x) =
m!∏

0≤k≤m(x+ k)
.

If m = 0, clearly

f0(x) =

∫ 1

0

(1− t)0
tx−1dt

=

∫ 1

0

tx−1dt

=
tx

x

∣∣∣∣1
0

=
1x

x
− 0x

x

=
1− 0

x

=
1

x

=
0!∏

0≤k≤0(x+ k)
.

Then, assuming

fm(x) =
m!∏

0≤k≤m(x+ k)
,

we must show that

fm+1(x) =
(m+ 1)!∏

0≤k≤m+1(x+ k)
.



Exercises from Section 1.2.5 13

But by integration by parts, since d
dx

tx

x = tx−1 and d
dt (1− t)

m+1 = −(m+ 1)(1− t)m,

fm+1(x) =

∫ 1

0

(1− t)m+1tx−1dt

= (1− t)m+1 t
x

x

∣∣∣∣1
0

−
∫ 1

0

−(m+ 1)(1− t)m t
x

x
dt

= (1− 1)m+1 1x

x
− (1− 0)m+1 0x

x
+
m+ 1

x

∫ 1

0

(1− t)mtxdt

= 0− 0 +
m+ 1

x

∫ 1

0

(1− t)mtxdt

=
m+ 1

x
fm(x+ 1).

And so, by the inductive hypothesis,

fm+1(x) =
m+ 1

x
fm(x+ 1)

=
m+ 1

x

m!∏
0≤k≤m(x+ 1 + k)

=
(m+ 1)m!

x
∏

1≤k≤m+1(x+ k)

=
(m+ 1)!∏

0≤k≤m+1(x+ k)
,

so that

fm(x) =
m!∏

0≤k≤m(x+ k)
.

Finally ∫ m

0

(
1− t

m

)m
tx−1dt = mx

∫ 1

0

(1− t)mtx−1dt

= mxfm(x)

= mx m!∏
0≤k≤m(x+ k)

=
mxm!∏

0≤k≤m(x+ k)

= Γm(x)

as we needed to show.

20. [HM21 ] Using the fact that 0 ≤ e−t − (1− t/m)m ≤ t2e−t/m, if 0 ≤ t ≤ m, and the previous exercise,
show that Γ(x) =

∫∞
0
e−ttx−1dt, if x > 0.

Proposition. Γ(x) =
∫∞

0
e−ttx−1dt, if x > 0.

Proof. Let x be an arbitrary positive real number such that x > 0. We must show that

Γ(x) =

∫ ∞
0

e−ttx−1dt.

Let

g(x) =

∫ ∞
0

e−ttx−1dt.
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It is sufficient to show that g(x)− Γ(x) = 0.

Note that if 0 ≤ t ≤ m,

1 + x ≤ ex ⇐⇒ 1± t/m ≤ e±t/m

⇐⇒ (1± t/m)m ≤ e±t

and from exercise 1.2.1-9,

e−t ≥ (1− t/m)m

= e−t(1− t/m)met

≥ e−t(1− t/m)m(1 + t/m)m

= e−t(1− t2/m2)m

≥ e−t(1− t2/m)

so that
0 ≤ e−t − (1− t/m)m ≤ t2e−t/m.

Then since x+ 1 ≥ 2,

0 ≤ e−t − (1− t/m)m ≤ tx+1e−t/m

⇐⇒ 0 ≤
∫ m

0

e−t − (1− t/m)mdt ≤ 1

m

∫ m

0

tx+1e−tdt <
1

m

∫ ∞
0

tx+1e−tdt

⇐⇒ 0 ≤
∫ ∞

0

e−t − (1− t/m)mdt ≤ 1

m

∫ ∞
0

tx+1e−tdt

⇐⇒ 0 ≤
∫ ∞

0

e−t − (1− t/m)mdt ≤ 0

⇐⇒
∫ ∞

0

e−t − (1− t/m)mdt = 0

⇐⇒
∫ ∞

0

e−ttx−1dt−
∫ ∞

0

(1− t/m)mtx−1dt = 0

⇐⇒ g(x)− Γ(x) = 0

as we needed to show.

21. [HM25 ] (L. F. A. Arbogast, 1800.) Let Dk
xu represent the kth derivative of a function u with respect

to x. The chain rule states that D1
xw = D1

uwD
1
xu. If we apply this to second derivatives, we find D2

xw =
D2
uw(D1

xu)2 +D1
uwD

2
xu. Show that the general formula is

Dn
xw =

n∑
j=0

∑
k1+k2+···+kn=j
k1+2k2+···+nkn=n
k1,k2,...,kn≥0

Dj
uw

n!

k1!(1!)k1 . . . kn!(n!)kn
(D1

xu)k1 . . . (Dn
xu)kn .

Proposition. Dn
xf =

∑
0≤j≤n

∑
k1+k2+···+kn=j
k1+2k2+···+nkn=n
k1,k2,...,kn≥0

n!Dj
gf
∏

1≤i≤n
(Di

xg)
ki

ki!(i!)ki
.

Proof. Let f be an arbitrary function of g, g an arbitarary function of x, and n a
positive integer. We must show that that the nth derivative of f with respect to x is

Dn
xf =

∑
0≤j≤n

∑
k1+k2+···+kn=j
k1+2k2+···+nkn=n
k1,k2,...,kn≥0

n!Dj
gf

∏
1≤i≤n

(Di
xg)ki

ki!(i!)ki
.
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As done by T. A.1, it suffices to analyze the coefficients for any function f . Let f =
epg(x). By Taylor’s theorem for an arbitrary h,

epg(x+h) =
∑
n≥0

hn

n!
Dn
xf .

But also, by expanding g(x+ h) and developing the product,

epg(x+h) = epg(x)
∏
n≥1

epD
n
xg

hn

n!

=
∑
n≥0

hn
∑

0≤j≤n

pjepg(x)
∑

k1+k2+···+kn=j
k1+2k2+···+nkn=n
k1,k2,...,kn≥0

∏
1≤i≤n

(Di
xg)ki

ki!(i!)ki

=
∑
n≥0

hn
∑

0≤j≤n

Dj
gf

∑
k1+k2+···+kn=j
k1+2k2+···+nkn=n
k1,k2,...,kn≥0

∏
1≤i≤n

(Di
xg)ki

ki!(i!)ki
.

Equating these two yields

∑
n≥0

hn

n!
Dn
xf =

∑
n≥0

hn
∑

0≤j≤n

Dj
gf

∑
k1+k2+···+kn=j
k1+2k2+···+nkn=n
k1,k2,...,kn≥0

∏
1≤i≤n

(Di
xg)ki

ki!(i!)ki

⇐⇒ 1

n!
Dn
xf =

∑
0≤j≤n

Dj
gf

∑
k1+k2+···+kn=j
k1+2k2+···+nkn=n
k1,k2,...,kn≥0

∏
1≤i≤n

(Di
xg)ki

ki!(i!)ki

⇐⇒ Dn
xf =

∑
0≤j≤n

∑
k1+k2+···+kn=j
k1+2k2+···+nkn=n
k1,k2,...,kn≥0

n!Dj
gf

∏
1≤i≤n

(Di
xg)ki

ki!(i!)ki

and hence the result.

[Bull. Amer. Math. Soc. 44 (1938), 395–398]

[Du Calcul des Dérivations (Strasbourg: 1800), §52]

[Quarterly J. Math. 1 (1857), 359-360]

. . . see the paper by I. J. Good, Annals of Mathematical Statistics 32 (1961), 540–541.

I 22. [HM20 ] Try to put yourself in Euler’s place, looking for a way to generalize n! to noninteger values of
n. Since (n+ 1

2 )!/n! times ((n+ 1
2 )+ 1

2 )!/(n+ 1
2 )! equals (n+1)!/n! = n+1, it seems natural that (n+ 1

2 )!/n!

should be approximately
√

(n). Similarly, (n+ 1
3 )!/n! should be ≈ 3

√
n. Invent a hypothesis about the ratio

(n + x)!/n! as n approaches infinity. Is your hypothesis correct when x is an integer? Does it tell anything
about the appropriate value of x! when x is not an integer?

1T. A. [J. F. C. Tiburce Abadie], Sur la différentiation des fonctions de fonctions, Nouvelles Annales de Mathématiques 9
(1850) 119-125.
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Observing that

(n+ 1
2 )!

n!
≈
√
n and

(n+ 1
3 )!

n!
≈ 3
√
n,

we might hypothesize that

lim
n→∞

(n+ x)!

n!nx
= 1.

When x is an integer, the equality holds, as

lim
n→∞

(n+ x)!

n!nx
= lim
n→∞

∏
1≤k≤x(n+ k)

nx

= lim
n→∞

nx
∏

1≤k≤x
(
1 + k

n

)
nx

= lim
n→∞

∏
1≤k≤x

(
1 +

k

n

)
= 1.

It tells us something about the appropriate value of x! when x is not an integer as well, since

1 = lim
n→∞

(n+ x)!

n!nx
= x! lim

n→∞

∏
1≤k≤n(x+ k)

n!nx

⇐⇒ x! = lim
n→∞

nxn!∏
1≤k≤n(x+ k)

= Γ(x+ 1).

23. [HM20 ] Prove (16), given that πz
∏∞
n=1(1− z2/n2) = sinπz.

Proposition. (−z)!Γ(z) = π
sinπz for z not an integer.

Proof. Let z be an arbitrary real number, not an integer. We must show that

(−z)!Γ(z) =
π

sinπz
.

But given

πz
∏
m≥1

(
1− z2

m2

)
= sinπz

⇐⇒ πz

sinπz
=

1∏
m≥1

(
1− z2

m2

)
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we have

z(−z)!Γ(z) = z lim
m→∞

m−zm!∏
1≤k≤m(−z + k)

lim
m→∞

mzm!

z
∏

1≤k≤m(z + k)

= lim
m→∞

m−zm!mzm!∏
1≤k≤m(−z + k)(z + k)

= lim
m→∞

(m!)2∏
1≤k≤m k

2
(
1− z

k

) (
1 + z

k

)
= lim
m→∞

(m!)2

(m!)2
∏

1≤k≤m
(
1− z

k

) (
1 + z

k

)
= lim
m→∞

1∏
1≤k≤m

(
1− z2

k2

)
=

1∏
m≥1

(
1− z2

k2

)
=

πz

sinπz
.

Finally, dividing both sides by z yields

(−z)!Γ(z) =
π

sinπz

as we needed to show.

I 24. [HM21 ] Prove the handy inequalities

nn

en−1
≤ n! ≤ nn+1

en−1
, integer n ≥ 1.

[Hint: 1 + x ≤ ex for all real x; hence (k + 1)/k ≤ e1/k ≤ k/(k − 1).]

Proposition. nn

en−1 ≤ n! ≤ nn+1

en−1 for integer n ≥ 1.

Proof. Let n be an arbitrary integer such that n ≥ 1. We must show that

nn

en−1
≤ n! ≤ nn+1

en−1
.

Note that since 1 + x ≤ ex for all real x,

1 +
1

k
≤ e 1

k ⇐⇒ k + 1

k
≤ e 1

k

⇐⇒ (k + 1)k

kk
≤ e,

and

1− 1

k + 1
≤ e−

1
k+1 ⇐⇒ k

k + 1
≤ e−

1
k+1

⇐⇒ kk+1

(k + 1)k+1
≤ e−1

⇐⇒ (k + 1)k+1

kk+1
≥ e.
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Then

nn

n!
=

∏
1≤k≤n n∏
1≤k≤n k

=

∏
1≤k≤n nk

k−1∏
1≤k≤n kk

k−1

=

∏
1≤k≤n nk

k−1∏
1≤k≤n k

k

=
nn

nn

∏
1≤k≤n k

k−1∏
1≤k≤n−1 k

k

=

∏
2≤k≤n k

k−1∏
1≤k≤n−1 k

k

=

∏
1≤k≤n−1(k + 1)k∏

1≤k≤n−1 k
k

=
∏

1≤k≤n−1

(k + 1)k

kk

≤
∏

1≤k≤n−1

e

= en−1,

and so
nn

en−1
≤ n!.

Then also

nn+1

n!
=

∏
1≤k≤n+1 n∏

1≤k≤n k

=

∏
1≤k≤n+1 nk

k∏
1≤k≤n kk

k

=

∏
1≤k≤n+1 nk

k∏
1≤k≤n k

k+1

=
nn+1

nn+1

∏
1≤k≤n k

k∏
1≤k≤n−1 k

k+1

=

∏
2≤k≤n k

k∏
1≤k≤n−1 k

k+1

=

∏
1≤k≤n−1(k + 1)k+1∏

1≤k≤n−1 k
k+1

=
∏

1≤k≤n−1

(k + 1)k+1

kk+1

≥
∏

1≤k≤n−1

e

= en−1,

and so

n! ≤ nn+1

en−1
.
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Therefore,
nn

en−1
≤ n! ≤ nn+1

en−1

as we needed to show.

25. [M20 ] Do factorial powers satisfy a law analogous to the ordinary law of exponents, xm+n = xmxn?

Factorial powers satisfy laws analogous to the ordinary law of exponents. In particular,

xm+n = xm(x−m)n

xm+n = xm(x+m)n,

since

xm+n =
x!

(x− (m+ n))!

=
x!

(x−m− n)!

=
x!

(x−m− n)!

(x−m)!

(x−m)!

=
x!

(x−m)!

(x−m)!

(x−m− n)!

= xm(x−m)n

and

xm+n = =
Γ(x+m+ n)

Γ(x)

=
Γ(x+m+ n)

Γ(x)

Γ(x+m)

Γ(x+m)

=
Γ(x+m)

Γ(x)

Γ(x+m+ n)

Γ(x+m)

= xm(x+m)n.


