Exercises from Section 1.2.5

Tord M. Johnson

March 27, 2014

1. [00] How many ways are there to shuffle a 52-card deck?

As we have 52 choices for the first card, 51 for the second, and so on, we simply have 52! ways to
shuffle a 52-card deck. 52! is the 68 decimal digit number

80658175170943878571660636856403766975289505440883277824000000000000.

2. [10] In the notation of Eq. (2), show that p,(;,—1) = Pnn, and explain why this happens.

Pnk = H .]

In the notation of Eq. (2), since

n—k+1<j<n
we have that
1<j<n 2<j<n n—(n—1)+1<5<n

That is, after choosing the (n — 1)th element, we have no choice left for the last element.

3. [10] What permutations of {1, 2, 3,4, 5} would be constructed from the permutation 3 1 2 4 using Methods
1 and 2, respectively?

We can construct permutations of the set {1,2,3,4,5} from the permutation 3 1 2 4 using either
method.

In Method 1, we insert 5 in all possible positions to obtain
53124,35124,31524,31254,and31245.

In Method 2, we start with an intermediary set of permutations
31243,31243,31245, 31247, and3124 3,

which are finally renamed as
42351,41352,41253,31254,and31245.

» 4. [13] Given the fact that log;, 1000! = 2567.60464 ..., determine exactly how many decimal digits are
present in the number 1000!. What is the most significant digit? What is the least significant digit?

Since the number of decimal digits in a number n is given by |log,on| + 1, log;,1000! =
2567.60464 . .. implies that 1000! has 2568 decimal digits.

The most significant digit is given by [ﬁﬁ%J, but since log;;4 = 0.60206... and log,;,5 =
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0.69897 ...,

log;, 1000! = 2567.60464 ... = 2567 + log,; 4 < log;, 1000! < 2567 + log, 5
—  logyy 10%%7 +log,y 4 < logy, 1000! < log,, 10%°%7 + log,, 5
= logy, (4-10%%97) < logy, 1000! < logy, (5 - 10%67)
1000!
= logyp4 <logyg 102567 < logy 5
1000!
= 4= T02568—1 < 5,

and so, the most significant digit is LNEOS%J =4.

The least significant digit is intuitively 0, since the factorial is some number multiplied by a factor
of 1000. We can determine precisely how many zeros using Eq. (8), since

1000
=3 | 5]

k>0
- 1000
- Z ok

1<k<9
=500+250+1254+624314+154+7+3+1
=994

and

gl
k>0
S L1000J
1<k<4 5
=200+ 40 + 8 4 1
— 249

giving us that for some arbitrary integer z not divisible by 10, 1000! = 2994 . 5249z = 2745 5. 10249,
that is, 1000! is a number that ends with 249 zeros.

[Scripta Mathematica 21 (1955), 266-267]

5. [15] Estimate 8! using the more exact version of Stirling’s approximation:

n\" 1
|~ V2 (—) 1+ — ).
" ™m\e ( +12n>

We may estimate 8! as

8\* 1
8! =~ /278 <e> (1 + )
16777216 97
= 4 _—
v e8 96

| 203423744,/7
a 3e8
~ 40318.
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» 6. [17] Using Eq. (8), write 20! as a product of prime factors.

Since the primes that divide 20 are 2, 3, 5, 7, 11, 13, 17, and 19, we may determine the multiplicity
of the prime factors of 20! as

20

=3 |7

k>0

20
2 |&
1<k<4
=10+5+2+1
— 18,

20
-]
k>0
B 20
=2 |
1<k<2
=6+2
:8’
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- ¥ |

1<k<1

and

-z 3

k>0

-y |2

N 19%
1<k<1

:17

so that 20! = 218.3% .54.72.11.13-17-19.

7. [M10] Show that the “generalized terminal” function in Eq. (10) satisfies the identity z? = z + (z — 1)?
for all real numbers z.

Proposition. z? =z + (z — 1)? for all real numbers x.
Proof. Let x be an arbitrary real number. We must show that

x?=x+ (r—1)7
But by Eq. (10)
1
x? = 517(1: +1)
1
:x—x+§z(x+1)

-2 1
:erquLix(qul)

:x—l—%(xQ-i—x—Qx)
:m-i—%(xQ—x)

—ot @)

= ot -1+

=x+ (z—-1)7
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as we needed to show. O
8. [HM15] Show that the limit in Eq. (13) does equal n! when n is a nonnegative integer.
When n is a nonnegative integer, we have

. m"m) . m"m)!
00 [y <pem(n+ k) mooo (n+m)!/n!

. n!m™m)!
= lim ———
m—oo (m + n)!
. nlmn
= lim ——M—
m—oo (m + n)!/m!
. nlm™
= lim ————
m—=oo [[cpcp(m + k)

m
=l ! —_—
mf},o" H m+k

1<k<n
m
=n! lim || _—
1<k<n
=nl.

9. [M10] Determine the values of I'(3) and T'(—3), given that (3)! = /7/2.
Given that (3)! = \/7/2, we have that

and that

since I'(n + 1) = nl'(n).
» 10. [HM20] Does the identity I'(x 4+ 1) = zI'(x) hold for all real numbers z? (See exercise 7.)
The identity I'(x 4+ 1) = zI'(z) holds for all real numbers x, except when x is zero or a negative

integer, since

m*m]!
Mz+1) = lim — 2"
m— o0 ngkgm(x =+ kj)
r—1

~ lim mx(x + m) m* tm!
m—oo x(T + m) H2§k§m+1((‘r —1)+k)

. m m=Iml!
= lim

m—oo T +m [[1<pepn (2 = 1) + k)
. m=~1m)
=T l1m
m—=oom+ [[icpep (@ — 1) + k)
. m® Im!
=z lim
m=00 [T) gy (@ — 1) + k)

= zI'(z).
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11. [M15] Let the representation of n in the binary system be n = 2°1 422 4 ... 4 2¢7 where e; > eg >
-+ > e, > 0. Show that n! is divisible by 2"~" but not by 27~ "*1

Given n = Zl<j<r 2¢  we may find the exact multiplicity of the prime factor 2 from Eq. (8) as:

=25

i>0

.
2: 2icj<r 27
26i
1<i<lr
2¢j
> X %
1<i<r |0<i<r
2¢i
=> > %
1<5<r 1<i<j

€e;j 1
2.2 ). &

1<g<r 1<i<y

B 0, 2799 (29 = 1)
B Z 2 21

Il I I
M MR
| | |

[\D —

() N | DN
“‘n-) \,m ;(P é‘.]

! | ~

®

p— <.

M S~— ‘

—_

- ~—

1<j<r 0<j<r
:n—gl
1<j<r
=n-—r

That is, n! is divisible by 2"~1, but not by 27~ "+1,

» 12. [M22] (A. Legendre, 1808.) Generalizing the result of the previous exercise, let p be a prime number,
and let the representation of n in the p-ary number system be n = app® +ap_1p* '+ - +a1p+ag. Express
the number p of Eq. (8) in a simple formula involving n, p, and a’s.
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Given n = Zo<j<k ajp’, we may express the number p from Eq. (8) as:

=2l

>0
7
1<i<k p

- Y | E e

7
1<i<k |o<j<k P

_ a;p’
*Zzpi

0<j<k1<i<j

. 1
ZE:%WE:E

0<j<k 1<i<j

_ Z ajpjpij(pj_l)

0<j<k p—1

Py -1
- Z Y1

_ Zogjgk aj(p’ — 1)

= o1

_ Zogjgk a;p’ — Zogjgk aj
p—1

_ n-— Zogjgk a;

p—1

13. [M23] (Wilson’s theorem, actually due to Leibniz, 1682.) If p is prime, then (p — 1) modp = p — 1.
Prove this, by pairing off numbers among {1,2,...,p — 1} whose product modulo p is 1.

Proposition. If p is prime, (p —1)! modp =p — 1.
Proof. Let p be an arbitrary prime. We must show that
(p—1)!'modp=p-—1.

By exercise 1.2.4-19, for each integer k, 1 < k < p — 1, there is another integer k&’ such
that
kk"=1 (mod p)

allowing us to 'pair off numbers’ as

(p—2)/1'=1 (mod p).
Also, clearly,
1=1 (modp)
and
(p—1)=p-1 (modp).
And so,
p—D!'=p—-1 (mod p)
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or equivalently
(p—)!'modp=p-—1

as we needed to show. O

» 14. [M28] (L. Stickelberger, 1890.) In the notation of exercise 12, we can determine n! mod p in terms of
the p-ary representation, for any positive integer n, thus generalizing Wilson’s theorem. In fact, prove that
n!/pt = (=1)*aplay!. .. a! (modulo p).

Proposition. n!/p" = (=1)" [[j<;<;, a:! (mod p).
Proof. Let n and p be arbitrary positive integers such that p is prime, n = >, -, @;p’,
and 1= 37 iy LPJJ We must show that

nl/p* = (-1)* H a;!  (mod p).
0<i<k

First consider the trivial case k = 0, so that n = ag and p = 0. Then clearly

ag! = ap! (mod p) <= ag!/p’ = H a;!  (mod p)
0<i<0

— nl/pt=(-1)* H a;! (mod p).
0<i<k

Then, assuming as an inductive hypothesis for ny = Zogigk a;p' and py, = Zlgigk L%J
that

ng!/p*t = (—1)H* H a;!  (mod p),
0<i<k

we must show for ngq1 = akﬂpk“ + ng and pggq = V’,SLJ + py that

g1l /Pt = (1) H a;! (mod p).
0<i<k41

(Note that the equality for 11 holds since ng11 has grown by a multiple of p; namely,
k
ak+1p"-)

But by Wilson’s theorem, all the terms between ng + 1 and ny4; that are not multiples

of p may be collected into sets of size p — 1 whose product is congruent to —1 modulo

p, and there are precisely V’,SEJ of these products, with a1 left over, congruent to

aj+1! modulo p. That is

Mk+1

/ = (‘UL’HIJ%H! (mod p).
nk+1<z<nk+1

Multiplying this by the inductive hypothesis yields

M1

£
/ w5 ng!/pH* E(_l)[”kﬂjakﬂl(—l)”k H a;!  (mod p)
nk+1<z<nk+1

— ny! H / E(fl)u’“illJJr”kakH! H a;! (mod p)

ne+H1<i<npgi 0<i<k

= mpal/pr = (0 [T el (mod p).
0<i<k+1
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Therefore
n!/p* = (—1)* H a;! (mod p)
0<i<k
as we needed to show.

O

15. [HM15] The permanent of a square matrix is defined by the same expansion as the determinant except

that each term of the permanent is given a plus sign while the determinant alternates between plus and
minus. Thus the permanent of

a b c
d e f
g h i

is aei + bfg + cdh + gec + hfa + idb. What is the permanent of

I1x1 1x2 ... 1xn
2x1 2x2 ... 2xXn

?
nxl nx2 ... nxn

The permanent of a square matrix may be defined recursively as

([ ] ) a1 ifn=1

erm(|a;jln) =

P s > 1<j<n @ij + perm(submatrix(a;j)) otherwise.

In the case that a;; = ¢ X j, we may simply add
(Ix1)+(2x2)+ -+ (nxn)=(n)?

and we do this for n! terms, yielding a total sum of
n!(n!)? = (n!)3.

16. [HM15] Show that the infinite sum in Eq. (11) does not converge unless n is a nonnegative integer.

The infinite sum in Eq. (11),

SIS ) (o))

]
k>0 0<j<k J: 0<j<k

does not converge unless n is a nonnegative integer, since if n < 0, the product H0§j<k(n —-7)
never vanishes as the coefficients

(In the case that n > 0, the product eventually vanishes with a factor of zero.)

17. [HM20] Prove that the infinite product

H (n+ai)...(n+ ayg)

P RUERNRNCENN

equals (1 4+ 51) ... T'(1+ Bk) /T(1+ 1) ... T(1+ ag), if a1 + -+ -+ ax = f1 + - -+ + B and if none of the §’s
is a negative integer.

oy i T'(148; . _
Proposition. anl ngigk Zi% = ngigk FEH—i; if Zlgigk Q= Zlgigk i and
B; >0 for1<i<k.
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Proof. Let a; and f3; be arbitrary integer sequences such that >, ., o; =

and 3; > 0 for 1 <14 < k. We must show that

ntoi 1+ﬂz
]-_-[ H n+G; (14 o)

n>11<i<k 1<i<k

But

Fd+8) _ lim m' il [Ty (14 i + )

1<i<k F(l —+ Oéi) m—oo 1<i<k m1+0¢zm' H0<J<m(1 —+ 51 —+ j)

= lim H mIHOSjSm(lJrO‘iﬂLJ)
moee gy MY [o<jcm X+ B8i+7)

mi<i<k Pi H0<3<m(1+ai+j)
= lim

m—00 yp2o1<i<k Vi \Sik HO<]<m(]‘ + B; +])

1
= lim H H %
M i<k 0<j<m +Bi+
1 ; ]
=1m [ I 14“)‘74”
m—o0 0<j<m 1<i<k —+ /61 +7
. n+ o
= lim H H
O Cn<mi<i<k + Bi
+ B

n
n>11<i<k

as we needed to show.

Zlgigk Bi

O

10

8. [M20] Assume that 7/2=2.2.2.2.5.8.... (Thisis “Wallis’s product,” obtained by J. Wallis in

7

5
1655 and we will prove it in exerc1se 1.2.6-43.) Using the previous exercise, prove that ( )' =./7/2.

Proposition. (3)! = /7/2.
Proof. We must show that

(;)1 =r/2.

But according to exercise 17 with a3 = ay = 0, 1 = —1/2, and S2 = 1/2 so that
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Zl§i§2 Q; = Zl§i§2 Bi and ﬁi > 0 for 1 < ) < 2,

NG

2

| =
2

[\
[\

N | =
[N}
3l\')
|3
—_
[\)
:[\J
+ |3
—_

3
\%
-

o N
3
BE
3

3

DN | =
3

Vv

—

[ I

+ a1 n+ a

N
SIS
+
o
3
+
=
no

3
V
—

Il

N =
— |
S|S
+|+
@[ L
E S

3
v
—
—_
B
IN
[ V)

1+ 51) I'(1+ Ba)
1+O¢1)F(1+O¢2)

N =
| | =

as we needed to show. O

[Wallis’s own heuristic “proof” can be found in D. J. Struik’s Source Book in Mathematics (Har-
vard University Press, 1969), 244-253.]

19. [HM22] Denote the quantity appearing after “lim,,,.” in Eq. (15) by I';,(z). Show that

m t m 1
L(z) = / (1 = ) t*ldt = mz/ (1 —t)y™*tat, ifx>0.
0 m 0
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Proposition. ', (z) = [ (1 — L) t"~Ldt = m” [, (1 — t)™*~'dt if © > 0.

Proof. Let x be an arbitrary positive real number so that x > 0. We must show that

m m 1
Lpn(z) = / <1 - t) t* 7 dt = m””/ (1 —t)™t" dt.
0 m 0

But by substituting mt for ¢

m t\™ t/t A\
/O (1—m> t’c—ldt:/o (1—:’;) (mt)*'dmt

1
:/ (1 =)™ m"t" dt
0

1
= m“C/ (1—t)™t*dt.
0

Then, let
1
fon(x) = / (1— )™t tdt.
0
We may prove by induction on m that

m)!

fm(@) = [locram(@+k)

If m =0, clearly

= - )
oz x
_1-0
oz
1
oz
0!
B Hogkgo@ +k)
Then, assuming
m!
fmn () = =0,
[o<k<m(z + k)
we must show that ( !
m—+1)!
fm+1(m)

B [lo<kcmsr(x+ k)
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But by integration by parts, since dit— =t""Land £(1—t)m+! =

1
fmi1(z) = / (1 -yt ldt
0
el
11

=(1-¢mt -

—/1—(m+1)(1—t)mt:dt

0 0

xT

1% 0* m+1 [*
=(1-1)"= (11—t / 1-—
( ) - ( ) -t 0(

1 1
S /(l—t)mtldt
0

xT

And so, by the inductive hypothesis,

Frsa(2) = " )

m+1 m!
T Hogkgm(x +1+4k)
(m+1)m
I Li<kcmir (@ + k)
B (m+1)!
B [o<k<mir(@+ k)’

so that
m!

HOSkS’m(I + k) .

/ (1—t> Tt = m/ — )™t
O m

=m" f(x)

- m!
[o<r<m(@+ k)

_ m*m/!

B [To<r<m(@ + k)

=L (z)

fm(x) =

Finally

as we needed to show.

—(m+1)(1—6)™

)7 dt

13

20. [HM21] Using the fact that 0 < e=! — (1 —t/m)™ < t%e~t/m, if 0 < t < m, and the previous exercise,

show that I'(z) = [ e "t*"dt, if 2 > 0.

Proposition. I'(z) = [~ e """ dt, if 2 > 0.

Proof. Let x be an arbitrary positive real number such that z > 0. We must show that

F(x):/ e " dt.
0

Let -
g(x) = / et at.
0
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It is sufficient to show that g(x) — I'(x) = 0.
Note that if 0 <t < m,

1+ <e’ — 1:tt/m§eit/m
= (1xt/m)™ <t

and from exercise 1.2.1-9,
> (1 —t/m)™

=e (1 —t/m)"e!

>e (1 —t/m)™ (1 +t/m)™

=e {1 —t2/m?)™

e (1 —t*/m)
so that
0<et—(1—t/m)™<t?e " /m.

Then since z +1 > 2,

0<e'—(1—t/m)™<t" e t/m

— 0< / et — (1 —t/m)mdt < —/ t"tHle tdt < — t"tle~tat

0 m Jo m Jo

o0 1 oo

— 0 g/ et — (1 —t/m)™dt < —/ t* e ~tat

0 mJo
— 0< / —(1—=t/m)™dt<0
= / (1—t/m)mdt=0
— / e " ldt — / (1—t/m)™t" dt =0

0
= =0
as we needed to show. O

21. [HM25] (L. F. A. Arbogast, 1800.) Let DFu represent the kth derivative of a function u with respect
to x. The chain rule states that Dlw = DlwD!u. If we apply this to second derivatives, we find D2w =
D2w(Dlu)? + DiwD?2u. Show that the general formula is

n,. . j n! 1, \k n, \kn
R TP DR (T e R
J=0 kitkot--+kn=j

k142k2+--4nk,=n
1,k2,....kn >0

(Dig)™i

Proposition. D! f = ZO<]<RZ Fithatethn=j 1ID? f]_[1<l<n IR
k14-2ka+-4nk,=n ‘
k17k27 7kn>0

Proof. Let f be an arbitrary function of g, g an arbitarary function of z, and n a
positive integer. We must show that that the nth derivative of f with respect to z is

5 SR SRR |
0<j<n kithat-+kn=j 1<i<n N

k1+2k2+---4+nk,=n
k1,k2,....kn >0
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As done by T. A1, it suffices to analyze the coefficients for any function f. Let f =
eP9(®) By Taylor’s theorem for an arbitrary h,

epg(z+h) _ Z Ep;lf

n!
n>0

But also, by expanding g(z + h) and developing the product,

Y
eP9(@+h) — opg(x) H PPz 9%

n>1
.
— Ny Jj op (@) (D39)""
Sy gty ]
n>0  0<j<n kitkotthkn=j 1<i<n

ki142ko+---+nky,=n
k1,k2,....kn >0

i \ks
N Dif H (Dmg)L.
D> Dy 2. Tl(iDk
n>0  0<j<n ki thottky=j 1<i<n
k14-2ko+--+nk,=n
P )

Equating these two yields

ZﬁDmf:Zh Z Dyf Z H i (i1)Fs
n>0 n>0  0<j<n kitkototkn=j 1<i<n 0

k1+2ka+--+nky=n
k1,k2,....kn >0

1 : Dy9)*
= —Dif= ) Dif > 11 Egl(lglik

0<j<n ki+kat - tkn=j 1<i<n
k1+4+2ko+---+nk,=n
k17k27---ak7120
: (Dy9)"
RS £
«f byt Jog (i) P
0<j<n kitkot+kn=j 1<i<n

k14-2ko+--+nkn,=n
k1,k2,....kn >0

and hence the result. O

[Bull. Amer. Math. Soc. 44 (1938), 395-398|
[Du Caleul des Dérivations (Strasbourg: 1800), §52]
[Quarterly J. Math. 1 (1857), 359-360]
. see the paper by I. J. Good, Annals of Mathematical Statistics 32 (1961), 540-541.

» 22. [HM20] Try to put yourself in Euler’s place, looking for a way to generalize n! to noninteger values of
n. Since (n+ 3)!/n! times ((n+ )+ 1)!/(n+ 1)! equals (n+1)!/n! = n+1, it seems natural that (n+ 3)!/n!
should be approximately ﬂn) Similarly, (n + %)' /n! should be ~ /n. Invent a hypothesis about the ratio
(n+ x)!/n! as n approaches infinity. Is your hypothesis correct when z is an integer? Does it tell anything
about the appropriate value of z! when z is not an integer?

IT. A. [J. F. C. Tiburce Abadie], Sur la différentiation des fonctions de fonctions, Nouvelles Annales de Mathématiques 9
(1850) 119-125.
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Observing that

n+ 1)
( ] 2) =~ y/n and
(4D e
n 7 ’
we might hypothesize that
. (n+a)
lim 1.

When z is an integer, the equality holds, as

. (n+a) _ Thick<s(n+ k)
llm _— = llm —_—

n—oo nlnt n— 00 n<

g n* H1gk§x (1 + %)
= l1im

n—o00 nv

~tim TT (1+3)

1<k<w

=1.

It tells us something about the appropriate value of ! when x is not an integer as well, since

! Lk
L= tim OED gy heksn@4R)
Tp!

n—=o0 [])cp<n(@+k)

23. [HM20] Prove (16), given that w2z [[,—,(1 — 2?/n?) =sinwz.

i
sinmz

Proposition. (—2)!T'(z) = for z not an integer.

Proof. Let z be an arbitrary real number, not an integer. We must show that

(—2)I0(z) =

s

sinz’
But given

52
TZ H (1 — 2) =sinmz
m

TZ 1

e Lot (1 25)

16
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we have

2(=2)IT'(z) = z lim m_m! im m=m!
m=o0 [ cpcpn (=2 + k) mooo 2 ][ cfcpn (2 + k)

m~*m!m*m)!

= lim
m=o0 [ cpam (=2 +F)(z + k)
. (m!)?
= lim
m—r00 ngkgm k2 (1 - %) (1 + %)
: (m!)?
= lim
m=oo (m)? [[i cpepn (1= %) (14 7)
= lim 1
m=20 [T} cpam (1- %)
B 1
Tz
T osinwz’

Finally, dividing both sides by z yields

™
(=2)IT(z) = sin Tz
as we needed to show. O
» 24. [HM21] Prove the handy inequalities
n" ntl
o <n!< pr— integer n > 1.

[Hint: 1+ 2 < e® for all real x; hence (k + 1)/k < ek < k/(k —1).]

ey n n+1 .
Proposition. = < n! < =t for integer n > 1.

Proof. Let n be an arbitrary integer such that n > 1. We must show that

nn nn—i—l
<nl<
en—1 — n= en—1 '

Note that since 1 + x < e” for all real z,

s

1+-—<e

el

—
—

and
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Then

~ Tli<k<n nk"~!

B ngkgn kekh—1

B [licr<n nkk=1

 Tlicken ¥

n" [i<i<n k!

n" [Tichan1 K

[locpe, K

[li<h<n—1 K*

[Tickan1(k+ 1)k
[li<i<n—1 B

_ H (k+1)*

kk

1<k<n-—1
<TI0 e
1<k<n-—1

_ enfl7

and so

Then also

1
n™t [li<k<niam

n! H1§k§n k
k
H1§kgn+1 nk
k
ngkgn kk
k
H1§kgn+1 nk
11 LRr1
1<k<n

k
nntl H1§k§n k

n+1 k+1
n ngkgnfl k
k
HQSkSn k

k+1
H1§k5n71 k

[Li<i<n1(k+ IDlan

k41
ngkgn—1 k

_ H (k + 1)k+1

kk+1
1<k<n-—1

B
1<k<n—1

— enfl’

and so
n'rLJrl
- en—l :
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Therefore,

as we needed to show.
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25. [M20] Do factorial powers satisfy a law analogous to the ordinary law of exponents, x™+" = z™x"?

Factorial powers satisfy laws analogous to the ordinary law of exponents. In particular,

T

2™ =" (x +m)™

m—+n

|3

= 2™ (x — m)

)

xm+n — SU'
(z = (m +n))!
x!
- (x —m —n)!
_ x! (x —m)!
(z—m—n)! (z —m)!
! (x —m)!
(x—m)! (x —m —n)!
=z™(x —m)®
and
o I'(x +m+n)
[(z)
D@ +m+n)T(z+m)
I'(x) I'(z+m)
T +m)T(z+m+n)
- I(x) I'(x +m)

2™ (z +m)".



