Exercises from Section 1.2.7
Tord M. Johnson
April 27, 2015

1. [01] What are Hy, Hy, and Hs?

By definition, we have

1<k<0
1
Hl_ :7:17
1
1<k<1
and 1 1 1 3
H: _ = — _ = —
2 k17373
1<k<2

2. [18] Show that the simple argument used in the text to prove that Ham > 1+ m/2 can be slightly
modified to prove that Hom < 1+ m.

We can show that the simple argument used in the text to prove that Hom > 1+ m/2 may be
slightly modified to prove that Hom < 1+ m, by noting that for each term, 1/(2™ + k) < 1/2™,
as shown in the proof by induction below.

Proposition. Hom < m + 1.

Proof. Let m be an arbitrary integer such that m > 0. We must show that Hom < m+1.
In the case that m =0,

Hy =H;=1<0+1.
Then, assuming
H2'm S m —+ 1
we must show that
H27n+1 <m+2.
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But
Moo= 3 ¢
om+1 — k
1<k<2m+1
1 1
-y o
1<k<2m 2m 4 1<k<2m+1
1
= Hom + Z %
2m 4 1<k<om+1
1
= Hom
1Sk§2!n
1
SHet >, o
1Sk§2m
2m
= H27n —+ ﬁ
- H21n + ]_
<m+1+1
=m++2
as we needed to show. O

3. [M21] Generalize the argument used in the previous exercise to show that, for » > 1, the sum Hy(lr)
remains bounded for all n. Find an upper bound.

Proposition. H,(f) < 23:; forr>1.

Proof. Let n be an arbitrary nonnegative integer and r an arbitrary real such that
r > 1. We must show that

") 27"71
-
H,” < 11
First note that for arbitrary m > 1, we may show that
1 < 2k
> S 2 o

1<k<2m—1 0<k<m

Ifm=1,

| -
|

|

7
=) -

I
= O

|
NN
Tl

Then assuming

1 ok
> ESZﬁ'

1<k<am—1 0<k<m
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we must show that
2k

1

<
kT —
1<k<2m

D

0<k<m+1
But

1
—+

r

>

1<k<2m-1

> =

9kr
0<k<m

2.

0<k<m

2.

0<k<m

2.

0<k<m

>

0<k<m

2.

0<k<m

>

0<k<m+1

+

>

Qm—l_;’_lgk.SQm
2k
okr + Z

1<k<2m-1

>

1§k§2m’1

2k
o T

1

IN

2m—1
+ (mel)r

2m71

2k
2k:r

2k:

2? + 2(m—1)r

2k
okr

2m

omr

2k
kr

1

r

2m—1+1§kg2m

1

T

1

(2m—1 + k)r

(2m=

1)7‘

and hence the noted inequality. We now continue with the main proof.

Since 27! > 1, we have both in the case that n = 0 that

r—1
) _ 1 _ 2
HO - Z ﬁ_og2r71_1

1<k<0
and in the case that n =1 = 2™ ! for m = 1 that

r—1
) _ 1_ 2
Hy' = Z 7_1§2r—1_1

1<k<1
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27‘—1

Then, for arbitrary m > 1, and since 2™ +m+r—1 = 2 1 < 271,

= 5tr—D)m
(N _ 1
H2'm71_ Z ﬁ
1<k<om—1
2k
<> om
0<k<m

1
:ZW

0<k<m

— Z 2(—7‘+1)k
0<k<m-—1
2(—r+1)0 _ 2(—T+1)m

1 —92—r+1
1 — o(=r+1)m
1 _9-rt+l
(27”(7"—1) — 1)/2m(r—1)
= (2r—1 —1)/2r1
27‘71(2m(r71) _ 1)
2m(7‘71)(2r71 _ 1)
gm(r—1)+(r—1) _ gr—1

om(r—1)+(r—1) _ 9m(r—1)
27m(r71)(2m(r71)+(7"71) _ 27’71)

9r—1_1

2—m(r—1)2m(r—1)+(r—1) _ 2—m(r—1)2r—1
B 2r—1 -1

or—1 _ 27m(7"71)+r71
- 21— 1

27’—1 _ 2—7n7'+m+7'—1
B 2r-1 1

27"71
R
=1
as we needed to show. O

» 4. [10] Decide which of the following statements are true for all positive integers n: (a) H, < Inn.
H,>1Ilnn. (c) H, >Inn+1.

In summary, (a) is false, while (b) and (c) are true, the justification for each enumerated below.

a) H, < Inn is not true for all positive integers n, as may be seen by considering n = 1, in
which case, H; =1 £ 0=1In1.

b) H, > Inn is true for all positive integers n, as may be deduced from Eq. (3), since v+ % —

1 1
02 T 13007 — € > 0.

¢) H, >Inn+ -~ is true for all positive integers n, as may also be deduced from Eq. (3), since

1 1 1
5 — Tonz T 12003 — € >0

5. [15] Give the value of Hyggoo to 15 decimal places, using the tables in Appendix A.
From Eq. (3) we know

1 1

1
H = In 10000 - B
10000 = In T+ 2(10000)  12(10000)2 + 120(10000)* ‘
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1 : r_ 1 :
f0r0<€<m. Lettlnge _W_€>O’ since

1
= 120(10000)*
1
T 1.2x 1018

1
1018’

/
€

<

we may ignore € in order to approximate Higggg to only 15 decimal places as

1 1
Hiouoo ~ In 10000 -
10000 7= 1 T 510,000 ~ 12(10,000)

59999

—4In1 L
10+ + 1550000000

Given

In 10 = 2.30258 50929 94045 6+
v = 0.57721 56649 01532 8+
59999

59999 o004 00001
1200000000 — 200004 99991 66666 6+

we may compute the sum as

2.30258 50929 94045 6
2.30258 50929 94045 6
2.30258 50929 94045 6
2.30258 50929 94045 6
0.57721 56649 01532 8
+ 0.00004 99991 66666 6
9.78760 60360 44381 8

That is,
H10000 ~ 9.78760 60360 44382 ...

6. [M15] Prove that the harmonic numbers are directly related to Stirling’s numbers, which were introduced

in the previous section; in fact,
1
H, = [”;r ] / n!.

Proof. Let n be an arbitrary nonnegative integer. We must show that

ooy

Proposition. H, = [”;1} /n!.
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In the case that n =0,

Then, assuming

we must show that

But
Hpt Hn—&-%ﬂ
-(["31/7)
n+1
:((n+l): S :—|—n!>/(n—|—l)!
_ <<n+1) :”‘2”: + [”TD /(n+1)! from Eq. (50)
_ ((n+1)_”;1 + Bfﬂ)/(nﬂ)!
— n—;?}/(nJrl)! from Eq. (46)
as we needed to show. O

7. [M21] Let T(m,n) = Hy, + H,, — Hpp. (a) Show that when m or n increases, T'(m,n) never increases
(assuming that m and n are positive). (b) Compute the minimum and maximum values of T'(m,n) for
m,n > 0.

We may provide a proof and determine bounds.

a) We may show that T'(m,n) never increases.

Proposition. T(m + 1,n) < T(m,n) for m,n positive integers.

Proof. Define T'(m,n) as
T(mvn) = Hm + Hn - Hmn
and let m and n be arbitrary positive integers. We must show that

T(m+1,n)—T(m,n) <0.
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But
71n1+—1,n)——7¥nu7ﬂ ::(Lﬂn+14'fﬂl_'lfhn+lyJ'_([Ln_kfﬂz_'fﬂnn)
= dmi1 + Hn - H(7n+1)n - Hm - Hn + Hmn
= dm+41 — H(m-i-l)n — Hy + Hpp
-— >
Com+1 k
mn+1<k<mn+n
eSS
m+ mn+1<k<mn+n mn +n

1 n
T m+1 mn+n
! 1
T m+1 m+1
—0

as we needed to show. O

b) We may determine both the lower and upper bounds of T'(m,n), for m,n positive integers.
Since T'(m,n) never increases, we know that the lower bound corresponds to the limit as
m — oo, and from Eq. (3),

lim T(m,n) = lim (H,, + H, — Hpy) = lim (H, —lnm) =1.
m— o0 m— o0 m—0o0
Similarly, since T'(m,n) never increases, we know that the upper bound corresponds to
m=n=1, and
T(1,1)=Hy+H,—-Hy=H,=1.

[AMM 70 (1963), 575-577]
8. [HM18] Compare Eq. (8) with >_7'_, Ink; estimate the difference as a function of n.
Given Eq. (8)
> Hp=(n+1)H, -
1<k<n

we may estimate the difference with ), , -, Ink. First, we note from Eq. (3) that

~n+1)(Inn+y+1/2n) —n
=nm+Dlnn+n+)y+(n+1)/2n—n
=(n+llnn—n+Mn+1)y+(n+1)/2n
n—|—1)lnn—n—|—(n+1)’y+1/2
Jinn—n+ny+y+1/2
n+1)lnn—n(1—’y)+(’y+1/2).
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Second, we note from Stirling’s approximation that

Z Ink=1Inn!
1<k<n
~Inv2mn (E)
e
1
=InV27 + Elnn—l—nlnn—nlne
1
=InV2m + <n+2) Inn—n
1
= (n+ 2) Inn —n+Inv2r.

And so,

Z Hy — Z Ink

1<k<n 1<k<n
1 1
Y ((n+1)lnn—n(1—7)+ <7—|— 2)) - ((n—i—Q) lnn—n+ln\/27r)
1 1
:(n+1)lnn+—n—|—'yn+7+§— (n+2) Inn+n—Inv2r

1 1
=yn+ (n+1n2>lnn+’y+21n\/27r

1 1
:'yn—l—ilnn—&—v—i—i—ln\/?w

1
~yn + 3 Inn + .158.
» 9. [M18] Theorem A applies only when = > 0; what is the value of the sum considered when z =

-17

We make a proposition and offer proof in the case that x = —1.

Proposition. >3, , () (-DFH, = -1

Proof. Let n be an arbitrary positive integer. We must show that

Z <Z)(—1)ka = —%-

Ifn=1,
Then, assuming

we must show that
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But

-y (Hevms ¥ (")

1<k<n+1

Corme Y ()0t

1<k<n+1

I

—
IA

ol
IA

3

> 3
N—

e S ()0

1<k<n+1

i (erne 5 ()
)

T =

1<k<n+1

o () e

1<k<n+1

n .1
k— 1)(_1)k IE

_ (n;: 1) (—1)F~1 from Eq. 1.2.6-(7)
n

(e g, e

0<k<n+1

as we needed to show. O

10. [M20] (Summation by parts.) We have used special cases of the general method of summation by parts
in exercise 1.2.4-42 and in the derivation of Eq. (9). Prove the general formula

D (arsr — ap)be = anby —arby — Y apyr(bega — bi).

1<k<n 1<k<n
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Proposition. 7, (ak+1 — ar)bp = anby, —a1br — 32 <p o, ak+1 (b1 — bi).

Proof. Let n be an arbitrary positive integer. We must show that

Z (@k+1 — ar)by = anby, — arby — Z g1 (b1 — by).

1<k<n 1<k<n

But

Z (@k+1 — ar)by

1<k<n
= E Qpt1b — E arby
1<k<n 1<k<n
= E ap4+1by — E ap410p11
1<k<n 0<k<n-—1

= Z ap11by — | a1by + Z agy1bgr1 — anby

1<k<n 1<k<n

= apby, — a1y + g ag+1br — E ak4+1bk41
1<k<n 1<k<n

=anby —arby — | Y appibegi— Y ariabe

1<k<n 1<k<n
= apby, —a1by — E ag+1(be+1 — i)
1<k<n

as we needed to show.

» 11. [M21] Using summation by parts, evaluate

10
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The sum may be evaluated using summation by parts as

1
2 k(k—l)Hk
1<k<n
B k—(k—1)
= > k(k—1) H
1<k<n
11
= > <k:—1k;>Hk
1<k<n
1 1 >
= Z — - — H,
1<k<n< (k+1)—1 k-1

Il
/’T‘\
N
I~
—_

|
x| =
~——

=

+

—

1 1<k<n k+1

1( 1 1 1
=—— | Hp+ >+1++ Z —— (Hgs1y41 — Hig1)

n 1 2 v k+1

1 1 1 1
= _EHn_ e tl+5+ Z 1 (H(kg1)+1 — Hir1)

1<k<n
1 1 1 1 1

- “H,- - 14 S

n nn+1+ +2+ k+1k+2

1<k<n
1 1 1 1

= ——H, — Fl4 s+ —

n nn+1 2 o (k+1)(k+2)

1 11 1 (k+2)— (k+1)
=—H,————+1+-+ >

n nn+1 2 W (k+1)(k+2)

1 1 1 1 1 1
- _H,- - 14 = L

n nn+1+ +2+1<;<1k+1 k+2

1 1 1 1 1 1
=——H, -~ 1+ = —_ _—
n nn+1+ +2+ Z k+1 1<kz;nk+2

1<k<n
1 1 1 1 1 1
=——H, — — 1+ = - — —
n nn+1+ +2+ Z k Z k
2<k<n 3<k<n+1
1 1 1 1 1
=——H, — — 1+ = ——1- -——1-=
n nn+1+ +2+ Z k Z k +
1<k<n 1<k<n
1 1 1 1 1 1
=——H, — — 1+-+H,—-1—-|H,—1— =
n nn+1+ +2+ ( 2+n—|—1
1 1 1 1 1 1
=—-H,— = +14+=+H,—-1—H,+1+=—
n nn+1 2 2 n+1
1 1 1 1
:7an77 +2—
n nn+1 n+1
1 1
=2—-H,/n—
/n (n(n+1)+n+1)
n+1
=2-H,/n— ——
/n n(n+1)
=2—-H,/n—1/n.

» 12. [M10] Evaluate H19% correct to at least 100 decimal places.

11
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By definition

1 1
1000 _ _ _
Heg _Zklooo _1+Zk1000 =lde

E>1 E>2

21000—1 .
where € < 51—y — 1 from exercise 3, and

21000—1

€< Smoo1_7 !

2999

:2999_1_1

_2999_1+1
T 999 _q -1

1
= e g 11

1
2999 -1

1
9998
1 1

e <
109981n2/1n 10 10300

so that
Hl(]OO 1.000.

to at least 100 decimal places.

13. [M22] Prove the identity

N " (n\ (z— 1)k
B2 ()
k=1 k=1

(Note in particular the special case = 0, which gives us an identity related to exercise 1.2.6-48.)

p it H (z—1)*
roposition. Zl<k<n = + 2 1<k<n ()5

Proof. Let n be an arbitrary positive integer and x an arbitrary real. We must show

that Zk H+Z(>x_1).

1<k<n 1<k<n

In the case that n =1

1<k<1

Then, assuming

we must show that

> Fomer 3 ()

1<k<n+1 1<k<n+1
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But
>
k
1<k<n+1
Z .Z'k xn+1
e k n+1
7 Z ﬁ N 1 anrl B 1
1gk§nk n+1 n+1 n+1
xk 1 1
— Z . ((1 + (z — 1))t — 1)
i k n+1 n+1
ak 1 1 n+1
_ T —1kF -1
P el N (k>($ )
1<k<n 0<k<n+1
ak 1 1 (n + 1) . n+1
= > —+—t+—10 > (ac—l)k—< )(;;;-1)0
1<k<n k n+l n+l 0<k<n+1 k 0
xk 1 1 n+1
-yt S (e
1<k<n n+lon+l o
xF 1 1 n+1 n
= - — 1)k from Eq. 1.2.6-(7
) A I D Dl (k—l)u ) rom =4 @
1<k<n 1<k<n+1
xk 1 n+11 n
2 T tait X +1k<k1)<x )
1<k<n 1<k<n+1
P n \ (x—1)F
=2 PR > ( -1 k
1<k<n 1<k<n+1
k 1 —1 n+1 -1 k
- %+ 1 <n1>(x )1 p> (knl)(xk)
1<k<n n+ n+ n+ 1<k<n+t1l N
n\ (z — 1)k 1 n x — 1)l n x— 1)k
S L A
1<k<n n+ n+ L 1<k<nt+1 N
n\ (x — 1)* n \ (z—1)*
= H _— _—
n+1 + (k’) k + Z (k . 1) ]ﬂ
1<k<n+1 1<k<n+1
—Ho 4 Z (" (z— 1)k
Tt k k—1 k
1<k<n+1
n+ 1\ (z — 1)*
—H,
ot Y ( ' ) .
1<k<n+1
as we needed to show. O

14. [M22] Show that 37, Hy/k = S(H2 + HY?), and evaluate Y>0_, Hy/(k +1).
We may prove the identity.

Proposition. ., Hy/k = i (H,QL + H7(L2))-
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Proof. Let n be an arbitrary nonnegative integer. We must show that

S Hifk= % (Hg + H,(f)) :

1<k<n

But

1 1 1

=3 Z =]t Z = from Eq. 1.2.3-(13)
1<k<n 1<k<n

_ LY pe

=5 (i a?)

as we needed to show. O
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Thus, we may evaluate the sum as

> Hi/(k+1)

1<k<n

= 7Hk

> X
1<k<n 1<j<k k+1 J

DRI

2<k<n+11<j<k—1

2
=1- Hﬁﬁl + Z
2<k<n+1
=1- Hﬁl + Z
1<k<n+1
_ (2)
=1- Hn+1 + Z
1<k<n+1
_ (2)
1- Hn+1 + Z
1<k<n+1

2
2 (H72L+1 H’r(l-izl)

» 15. [M23] Express > ,_, H? in terms of n and H,,.

15
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The sum is

> Hi

1<k<n

= Z H,H,,

1<k<n

2. He ),

1<k<n 1<5<k

1
J

Il
N
N

s

1<k<n 1<j<k

=Y X B

1$G<nj<ken I

= j{: }} j{: Hy,

155<n 7 j<h<n

1
= Z = Z Hy — Z Hj,
155<n 7 \1<k<n 1<k<j—1
1 . .
= -(((n+1DHy —n) = ((—1+1)H;—1 - (j - 1)) from Eq. (8)
1<5<n /
1
= —((n+1)Hp —n—jH;—1+j—1)
1<5<n 7

[
E)
+

DHy—n—1) Y %— > %jHj,ﬁ S %j

1<j<n 1<j<n 1<j<n

=((n+1)Hy—n—1)H,— Y Hj1+ > 1

1<j<n 1<j<n

=(m+1)H, —nH, —H,— | Y H;j—H,|+n
1<j<n
=(n+1)H?-nH, - H,—((n+1)H, —n—H,) +n
=(n+1)H? -nH, —H,— (n+1)H, +n+H, +n
=(n+1)H?-nH, — (n+1)H, +2n
= ( )

n+1)H2 - (2n+ 1)H,, + 2n.

16. [18] Express the sum 1+ % + 4 Tl—l in terms of harmonic numbers.
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The sum of all n unit fractions with odd denominators through 2n — 1 may be expressed as

1 1
> % —1 > A

1<k<n 1<k<2n—1
k odd
> oo Y
k
1<k<2n—1 1<k<2n—1

Il
I =
I

[N}
[~

1<k<2n-1 1<k<n-—1
1 1
= Hanl -3 -
2 k
1<k<n-—1
1
- Hanl §Hn71

17. [M24] (E. Waring, 1782.) Let p be an odd prime. Show that the numerator of H,_; is divisible by
p.

Proposition. If p is an odd prime, the numerator of Hy,_1 is divisible by p.

Proof. Let p be an arbitrary odd prime. We must show that the numerator of H,_; is
divisible by p. That is, that

(p—1)Hp_1 = Z (p—1) =0 (mod p).

1<k<p—1
From exercise 1.2.4-19, the law of inverses, we may find a k' such that
kk"=1 (mod p)

since k L p. Note that 1 <k < p— 1 and that each &’ is unique such that {k|]1 < k <
p—1} = {K'|kk’ =1 (mod p)}. Also note that since p is an odd prime by hypothesis,
— 1) ;1) is an integer. Then, from Wilson’s theorem

(p—1)!'=-1 (mod p)

we have that

as we needed to show. O
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[Hardy and Wright, An Introduction to the Theory of Numbers, Section 7.8]

[M33] (J. Selfridge.) What is the highest power of 2 that divides the numerator of 1 + & + ---
H

2n—1"

We want to find the highest power of 2 that divides the numerator of
P
W 2k — 1’
assuming n positive.

Let m be the integer such that n = 2"m for some integer r. We know that m exists and is odd,
as it is the product of the odd primes from the prime factorization of n.

‘We then have

1 1
> % —1 > 2% —1

1<k<n 1<k<2™m

1
2. ) mEiaT

0<j<m—11<k<2"

which we may prove by induction on m.

Ifm=1,

1 1 1
2 2% —1 2 02T +2k—1 2. 2 G2 4 2%k — 1

1<k<2r 1<k<2r 0<j<01<k<2r

Then, assuming

1 1
DD Sl DEND D v iy &

1<k<2rm 0<j<m—11<k<2r

we must show that

1 1
> 2% —1 > 2 G2 42k — 1

1<k<2r (m+1) 0<j<m 1<k<2r

But

1 1 1
> % —1 > k1" > 2% — 1

1<k<2r (m+1) 1<k<2™m 2rm41<k<27 (m+1)
1 1
= E E —_— + E
+1 _ _
0<j<m—11<k<2r garet + 2k —1 2rm4+1<k<27 (m+1) 2k -1

1 1
2. X mimoit 2w

0<j<m—11<k<2r 1<k—2rm<2r

1 1
> D mrmoit X wriwe) 1

0<j<m—11<k<2r 1<k<2r

1 1
= 2 2 o r ok —1 D m2r+m + 2k — 1

0<j<m—11<k<2r 1<k<2r

1
= > 2% —1

1<k<2™m

18
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and hence the identity.
Let
pi= [ 2t +2k-1
1<k<2r
be the common denominator such that

)P o b S P52+ + 2k — 1)
jorl 42k — 1 Py(j2r T + 2k — 1) P; '

1<k<2r 1<k<2r 1<k<2r

_1
2k—1

P,
P DT

0<j<m—11<k<2r

That is, such that the numerator of ), , .. is

m sets of 2" terms, each of the form P; over a distinct odd residue of 2"T!. Each ratio itself
is an integer and a distinct odd residue of 2"*! and the sum of 2" distinct odd residues is
2" m; = 22rmj for some integer m; by the odd number theorem, m; odd. That is, the numerator

of > 1cpen T 18
Z 22ij = 22T Z mj.
0<j<m—1 0<j<m—1
Since m is odd, we know the sum of m odd terms m; is itself an odd number. Let this be M, so
that the numerator of Y-, ., 577 18
o 2" M
for some odd integer M. That is, 22" is the highest power of 2 that divides the numerator of

1
Z 2k -1

1<k<n

where m is the odd integer such that n = 2"m for some integer r.

[AMM 67 (1960), 924-925]

» 19. [M30] List all nonnegative integers n for which H,, is an integer. [Hint: If H, has odd numerator
and even denominator, it cannot be an integer.|

The nonnegative integers n for which H,, is an integer are n = 0 and n = 1, since Hy = 0 and
H; = 1. To see why these are the only n, consider the following. Let k = |lgn]| with n > 2, so
that 28 < n < 251 and k£ > 1, and let

P = H 2Fm

1<i<n

be the common denominator for each term of H,,, m odd but P even. We know that m exists
and is odd, as it is the product of the odd primes from a prime factorization of the common
denominator. Then
1
Hy= 3 =

I
g
3
~_
Y
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If H, is an integer, then so is H,, — 1. But

Hy,—1= > P/j/P—AP{

2<j<n

for M =3 5 <, P/j. Each term in M is even except for the term with j = 2k P2k = m,
which means M is odd. But the divisor P is even. This means their ratio cannot possibly be an
integer, and hence the claim.

20. [HM22] There is an analytic way to approach summation problems such as the one leading to Theorem
A in this section: If f(z) =, 5, arz®, and this series converges for z = zg, prove that

Z apak Hy, = /01 f(330)1—fy($0y) dy.

k>0

Proposition. If f(z) = Y, -, arz® and f(z) converges forx = g then' Y, <, axx§ Hy =
L o) —fow) g - -
0 T—y Y-

Proof. Let f(x) = ,~,axz” be a series with arbitrary coefficients aj, such that f(z)
converges for & = x9. We must show that

Z ak:c’ng _ /01 f(ifo)l__J;(fﬁoy) dy.

k>0

But

Zakxlng:Zakxlg Z %

k>0 k>0 1<j<k
1
=S ot 3 [y
k>0 1<j<k 0
1
=Yoot [ 3 vy
k>0 0 <<k
1
=Saat [ 3 v
k>0 0 o<j<k—1
1,0 k=141
y -y
:Zakxg/ W
k>0 0 Yy
1 k
1_
= akx]g/ l—y dy
k>0 0 Yy
1
_ 1 E_ k k
= Z(akxo arxy”)dy
0 1—yk20
1
_ 1 k k d
11— Zakxo Zak(xoy) Y
0 Y\ >0 k>0
1
1
= [ 5 ()~ o) dy
o 1—y
_ [ )~ S,
0 1—y

as we needed to show. O
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[AMM 69 (1962), 239; H. W. Gould, Mathematics Magazine 34 (1961), 317-321]
21. [M24) Evaluate > ,_, Hy/(n+1—k).

21
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The difference between the sum for n and n + 1 is given as

DR o .
i 2ok L2 A l—k
S oy He o He
n+2—(n+1) 1<k<nn+2—k 1§k§nn+1_k
Hy, H,
=Heat 3 5T 2 arich
1<k<n 1 $hen
Hy,
—Hat ¥ (55 )
1<k<n n+2_ Cn+l—k
Hy H,
=Hat X T X ariok
1<k<n G
= C Higgr H,
= Ipy1+ Z n+1—k Z e
0<k<n Gt
H, Hpi1 H,
= Mo+ Hy1 + _
LR +1 1<1$Z;Hn+1fk 1<1$Z;Hn+lik
it S e S
n+1 1§k§nn+1_k lgkgnn+1_k
TSR M M
1 H 1 b
T nti1 Z mﬁ- S CESE Z ﬁh
1<k<n 1<k<n S
S Y
n+l 1<k<n (k+1)(n+1-k)
1 1 ]
- +
ntl 1<§k2n<(”+2)(k+1) (n+2)(n—|—1_k)>
1 1 1 1
fn+1+n+2 ; <k’+1+n+1_k;>
1 1 .
"t s T
n+1 n+21<k< k+1 n—+2 <kgnn+1_k
1 1 1 1 1
RIS O
n+ n+2 a<in +1 n+21<k§n
1 H’n,
EEESIE D R
n—+ n -+ 5 —
R "
B N +H
_n—|-1 (TL+1)( —|—2) TL+2 n+2
_ 1 H, 1 Hyio
T n+1 n+2 n+2 n+2
_ 1 H, Hpi
S (n+1)(n+2) n+2 n+2
_ Hnir | Hon
n+2 n+2
_2Hn+1

n+2
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Then, in the case that n =1

H H
Z1 1kk:1 1kk:H1:1:
1<k<1 +1= +1-=

and assuming

1<k<
it may be shown that
Hy, 2 (2)
2 g e s
1<k<n+1
as
>
1<k<nt1 t2-k
H H
_ Z 1k - +2 n-‘r;
1<k<n +1-= n+
_ 2 @) Hppa
=Hy — Hyy + Qm
H,1q 1 2) 1
=H? gt —g® -
ni1 n+2+(n—|—2)2 o (n 4 2)2
2
1 (2) 1
= (Hop+——) —(H S —
( ar n+2> ( RN O
2
= H721+2 - Hﬁﬁz
That is

22. [M28] Evaluate > ;_o HipHy .

23
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From summation by parts and exercise 21,

E: HyHy g

0<k<n

2{: HyHy g

1<k<n
Z Hj | Hy—pn — Z Z H; | (Hp—(k+1) — Ho—k)
1<j<n 1<k<n \1<j<k
1
(n+ DHy —n)Ho+ > ((k+ 1D)Hy k) —
1<k<n—1 n-
Z (k+1)H, — k
1<k<n—1 n—k
k
1<k<n—1
Z an,k—anfk‘i‘ank_n"—k
k
1<k<n—1
nf{n,k kf{n,k }]n—k n k
DR s
1<k<n—1 1<k<n-—1 1<k<n—1 1<k<n—1 1<k<n—1
}yn—k }in—k 1
D S SRR SR SIS DI
1<k<n—1 1<k<n—1 1<k<n—1 1<k<n—1 1<k<n—1
Hy, Hy 4
DS C AR S = ST R
1<k<n—1 1<k<n—1 1<k<n—1
H, H
noy _’“k— SNooHm+ Y _kk—n(Hn—l)
1<k<n—1"" 1<k<n—1 1<k<n—1""

n+1) > H‘“k—(((n—1)+1)Hn,1—(n—l))—n(Hn—n

n —

H
(n+1) Z n_kk—an_1—|—n—1—n(Hn—1)

(n+1) > A —n(H, —1) —n(H, — 1)

1§kgn71n_k
Hy,
1 _ _
(n+1) Y — = 2n(H, — 1)
1<k<n—1

» 23. [HM20] By considering the function I''(z)/I'(z), show how we can get a natural generalization of H,
to noninteger values of n. You may use the fact that IV(1) = —v, anticipating the next exercise.

We can get

() /T (),

a natural generalization of H,, to noninteger values of n by considering the function
using the fact that I'V(1) = —.

By definition,

Iz +1) =al(x),
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and so

if and only if

giving us a natural generalization of H,, to noninteger values of n as

(2 + 1)

H, =
I(z+1)

Note that in the case that z =0

and assuming

we have that

proving the identity holds for all nonnegative integers .

24. [HM21] Show that

o (1)) = riy

k>1

(Consider the partial products of this infinite product.)

Proposition. ze?* [],;, (1+2)eo/k) = ﬁ

25
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Proof. Let x be an arbitrary real. We must show that

xe* H ((1 + %) e_”’/k> = %

k>1

But since
~v= lim (H, —Ilnn)

n—oo

we have that

xe’” H ((1 + %) e_m/k)

E>1
_ vz E) 7&3/]{7)
e n@g;) II ( 1+ 3 e
1<k<n
T
— YT el —z/k
Ariggaxe II 1+ k) e )
1<k<n
— (Hp—Inn)z —z/k
g ze [T ((+5)")
1<k<n
e$Hn T
— —z/k
= Jim oS I (1) )
1<k<n
eTHn
= lim =z H (1+ )6*10/’6)
n— 00 n
1<k<n
= hm ieIHn H 1+ ) —w/k)
n—oo N
1<k<n
. H o TH, €z —x/k
= Jim Sert | I (L) )| T e
1<k<n 1<k<n
1<k<n
—_1; T xH, { —xH,
= m se IT (1+3) )¢
1<k<n
T T
S
Jm 5 I (g

I
3
|
[ [
|::|
8
_|_
e

lim iHlSkSn(m + k)
n=oon®  [[ipc, kb
. T II1§kg7K37*’k)
= lim ——="=" -
n—oo NT n!
. r]licpen(z k)
= lim

n—00 n*n!

1

I(z)

as we needed to show.

26



