
Exercises from Section 1.2.7

Tord M. Johnson

April 27, 2015

1. [01 ] What are H0, H1, and H2?

By definition, we have

H0 =
∑

1≤k≤0

1

k
= 0,

H1 =
∑

1≤k≤1

1

k
=

1

1
= 1,

and

H2 =
∑

1≤k≤2

1

k
=

1

1
+

1

2
=

3

2
.

2. [13 ] Show that the simple argument used in the text to prove that H2m ≥ 1 + m/2 can be slightly
modified to prove that H2m ≤ 1 +m.

We can show that the simple argument used in the text to prove that H2m ≥ 1 + m/2 may be
slightly modified to prove that H2m ≤ 1 +m, by noting that for each term, 1/(2m + k) ≤ 1/2m,
as shown in the proof by induction below.

Proposition. H2m ≤ m+ 1.

Proof. Let m be an arbitrary integer such that m ≥ 0. We must show that H2m ≤ m+1.
In the case that m = 0,

H20 = H1 = 1 ≤ 0 + 1.

Then, assuming
H2m ≤ m+ 1

we must show that
H2m+1 ≤ m+ 2.

1
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But

H2m+1 =
∑

1≤k≤2m+1

1

k

=
∑

1≤k≤2m

1

k
+

∑
2m+1≤k≤2m+1

1

k

= H2m +
∑

2m+1≤k≤2m+1

1

k

= H2m +
∑

1≤k≤2m

1

2m + k

≤ H2m +
∑

1≤k≤2m

1

2m

= H2m +
2m

2m

= H2m + 1

≤ m+ 1 + 1

= m+ 2

as we needed to show.

3. [M21 ] Generalize the argument used in the previous exercise to show that, for r > 1, the sum H
(r)
n

remains bounded for all n. Find an upper bound.

Proposition. H
(r)
n ≤ 2r−1

2r−1−1 for r > 1.

Proof. Let n be an arbitrary nonnegative integer and r an arbitrary real such that
r > 1. We must show that

H(r)
n ≤ 2r−1

2r−1 − 1
.

First note that for arbitrary m ≥ 1, we may show that

∑
1≤k≤2m−1

1

kr
≤

∑
0≤k<m

2k

2kr
.

If m = 1, ∑
1≤k≤21−1

1

kr
=
∑

1≤k≤0

1

kr

= 0

≤ 1

=
20

2(0)r

=
∑

0≤k<1

2k

2kr
.

Then assuming ∑
1≤k≤2m−1

1

kr
≤

∑
0≤k<m

2k

2kr
.
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we must show that ∑
1≤k≤2m

1

kr
≤

∑
0≤k<m+1

2k

2kr
.

But ∑
1≤k≤2m

1

kr
=

∑
1≤k≤2m−1

1

kr
+

∑
2m−1+1≤k≤2m

1

kr

≤
∑

0≤k<m

2k

2kr
+

∑
2m−1+1≤k≤2m

1

kr

=
∑

0≤k<m

2k

2kr
+

∑
1≤k≤2m−1

1

(2m−1 + k)r

≤
∑

0≤k<m

2k

2kr
+

∑
1≤k≤2m−1

1

(2m−1)r

=
∑

0≤k<m

2k

2kr
+

2m−1

(2m−1)r

=
∑

0≤k<m

2k

2kr
+

2m−1

2(m−1)r

≤
∑

0≤k<m

2k

2kr
+

2m

2mr

=
∑

0≤k<m+1

2k

2kr

and hence the noted inequality. We now continue with the main proof.

Since 2r−1 > 1, we have both in the case that n = 0 that

H
(r)
0 =

∑
1≤k≤0

1

kr
= 0 ≤ 2r−1

2r−1 − 1

and in the case that n = 1 = 2m−1 for m = 1 that

H
(r)
1 =

∑
1≤k≤1

1

kr
= 1 ≤ 2r−1

2r−1 − 1
.
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Then, for arbitrary m ≥ 1, and since 2−mr+m+r−1 = 2r−1

2(r−1)m < 1 < 2r−1,

H
(r)
2m−1 =

∑
1≤k≤2m−1

1

kr

≤
∑

0≤k<m

2k

2kr

=
∑

0≤k<m

1

2(r−1)k

=
∑

0≤k≤m−1

2(−r+1)k

=
2(−r+1)0 − 2(−r+1)m

1− 2−r+1

=
1− 2(−r+1)m

1− 2−r+1

=
(2m(r−1) − 1)/2m(r−1)

(2r−1 − 1)/2r−1

=
2r−1(2m(r−1) − 1)

2m(r−1)(2r−1 − 1)

=
2m(r−1)+(r−1) − 2r−1

2m(r−1)+(r−1) − 2m(r−1)

=
2−m(r−1)(2m(r−1)+(r−1) − 2r−1)

2r−1 − 1

=
2−m(r−1)2m(r−1)+(r−1) − 2−m(r−1)2r−1

2r−1 − 1

=
2r−1 − 2−m(r−1)+r−1

2r−1 − 1

=
2r−1 − 2−mr+m+r−1

2r−1 − 1

≤ 2r−1

2r−1 − 1

as we needed to show.

I 4. [10 ] Decide which of the following statements are true for all positive integers n: (a) Hn < lnn. (b)
Hn > lnn. (c) Hn > lnn+ γ.

In summary, (a) is false, while (b) and (c) are true, the justification for each enumerated below.

a) Hn < lnn is not true for all positive integers n, as may be seen by considering n = 1, in
which case, H1 = 1 ≮ 0 = ln 1.

b) Hn > lnn is true for all positive integers n, as may be deduced from Eq. (3), since γ+ 1
2n −

1
12n2 + 1

120n4 − ε > 0.

c) Hn > lnn+ γ is true for all positive integers n, as may also be deduced from Eq. (3), since
1

2n −
1

12n2 + 1
120n4 − ε > 0.

5. [15 ] Give the value of H10000 to 15 decimal places, using the tables in Appendix A.

From Eq. (3) we know

H10000 = ln 10000 + γ +
1

2(10000)
− 1

12(10000)2
+

1

120(10000)4
− ε
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for 0 < ε < 1
252(10000)6 . Letting ε′ = 1

120(10000)4 − ε > 0, since

ε′ <
1

120(10000)4

=
1

1.2× 1018

<
1

1018
,

we may ignore ε′ in order to approximate H10000 to only 15 decimal places as

H10000 ≈ ln 10000 + γ +
1

2(10, 000)
− 1

12(10, 000)2

= 4 ln 10 + γ +
59999

1200000000
.

Given

ln 10 = 2.30258 50929 94045 6+

γ = 0.57721 56649 01532 8+

59999

1200000000
= 0.00004 99991 66666 6+

we may compute the sum as

2.30258 50929 94045 6
2.30258 50929 94045 6
2.30258 50929 94045 6
2.30258 50929 94045 6
0.57721 56649 01532 8

+ 0.00004 99991 66666 6
9.78760 60360 44381 8

That is,
H10000 ≈ 9.78760 60360 44382 . . .

6. [M15 ] Prove that the harmonic numbers are directly related to Stirling’s numbers, which were introduced
in the previous section; in fact,

Hn =

[
n+ 1

2

]/
n!.

Proposition. Hn =
[
n+1

2

]/
n!.

Proof. Let n be an arbitrary nonnegative integer. We must show that

Hn =

[
n+ 1

2

]/
n!.
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In the case that n = 0,

H0 =
∑

1≤k≤0

1

k

= 0

=

[
1

2

]
=

[
0 + 1

2

]/
0!.

Then, assuming

Hn =

[
n+ 1

2

]/
n!

we must show that

Hn+1 =

[
n+ 2

2

]/
(n+ 1)!.

But

Hn+1 = Hn +
1

n+ 1

=

([
n+ 1

2

]/
n!

)
+

1

n+ 1

=

(
(n+ 1)

[
n+ 1

2

]
+ n!

)/
(n+ 1)!

=

(
(n+ 1)

[
n+ 1

2

]
+

[
n+ 1

1

])/
(n+ 1)! from Eq. (50)

=

(
(n+ 1)

[
n+ 1

2

]
+

[
n+ 1

2− 1

])/
(n+ 1)!

=

[
n+ 2

2

]/
(n+ 1)! from Eq. (46)

as we needed to show.

7. [M21 ] Let T (m,n) = Hm + Hn −Hmn. (a) Show that when m or n increases, T (m,n) never increases
(assuming that m and n are positive). (b) Compute the minimum and maximum values of T (m,n) for
m,n > 0.

We may provide a proof and determine bounds.

a) We may show that T (m,n) never increases.

Proposition. T (m+ 1, n) ≤ T (m,n) for m,n positive integers.

Proof. Define T (m,n) as

T (m,n) = Hm +Hn −Hmn

and let m and n be arbitrary positive integers. We must show that

T (m+ 1, n)− T (m,n) ≤ 0.
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But

T (m+ 1, n)− T (m,n) =
(
Hm+1 +Hn −H(m+1)n

)
− (Hm +Hn −Hmn)

= Hm+1 +Hn −H(m+1)n −Hm −Hn +Hmn

= Hm+1 −H(m+1)n −Hm +Hmn

=
1

m+ 1
−

∑
mn+1≤k≤mn+n

1

k

≤ 1

m+ 1
−

∑
mn+1≤k≤mn+n

1

mn+ n

=
1

m+ 1
− n

mn+ n

=
1

m+ 1
− 1

m+ 1

= 0

as we needed to show.

b) We may determine both the lower and upper bounds of T (m,n), for m,n positive integers.
Since T (m,n) never increases, we know that the lower bound corresponds to the limit as
m→∞, and from Eq. (3),

lim
m→∞

T (m,n) = lim
m→∞

(Hm +Hn −Hmn) = lim
m→∞

(Hm − lnm) = γ.

Similarly, since T (m,n) never increases, we know that the upper bound corresponds to
m = n = 1, and

T (1, 1) = H1 +H1 −H1 = H1 = 1.

[AMM 70 (1963), 575–577]

8. [HM18 ] Compare Eq. (8) with
∑n
k=1 ln k; estimate the difference as a function of n.

Given Eq. (8) ∑
1≤k≤n

Hk = (n+ 1)Hn − n

we may estimate the difference with
∑

1≤k≤n ln k. First, we note from Eq. (3) that∑
1≤k≤n

Hk = (n+ 1)Hn − n

≈ (n+ 1) (lnn+ γ + 1/2n)− n
= (n+ 1) lnn+ (n+ 1)γ + (n+ 1)/2n− n
= (n+ 1) lnn− n+ (n+ 1)γ + (n+ 1)/2n

≈ (n+ 1) lnn− n+ (n+ 1)γ + 1/2

= (n+ 1) lnn− n+ nγ + γ + 1/2

= (n+ 1) lnn− n(1− γ) + (γ + 1/2).
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Second, we note from Stirling’s approximation that∑
1≤k≤n

ln k = lnn!

≈ ln
√

2πn
(n
e

)n
= ln

√
2π +

1

2
lnn+ n lnn− n ln e

= ln
√

2π +

(
n+

1

2

)
lnn− n

=

(
n+

1

2

)
lnn− n+ ln

√
2π.

And so, ∑
1≤k≤n

Hk −
∑

1≤k≤n

ln k

≈
(

(n+ 1) lnn− n(1− γ) +

(
γ +

1

2

))
−
((

n+
1

2

)
lnn− n+ ln

√
2π

)
= (n+ 1) lnn+−n+ γn+ γ +

1

2
−
(
n+

1

2

)
lnn+ n− ln

√
2π

= γn+

(
n+ 1− n− 1

2

)
lnn+ γ +

1

2
− ln

√
2π

= γn+
1

2
lnn+ γ +

1

2
− ln

√
2π

≈ γn+
1

2
lnn+ .158.

I 9. [M18 ] Theorem A applies only when x > 0; what is the value of the sum considered when x =
−1?

We make a proposition and offer proof in the case that x = −1.

Proposition.
∑

1≤k≤n
(
n
k

)
(−1)kHk = − 1

n .

Proof. Let n be an arbitrary positive integer. We must show that∑
1≤k≤n

(
n

k

)
(−1)kHk = − 1

n
.

If n = 1, ∑
1≤k≤1

(
1

k

)
(−1)kHk =

(
1

1

)
(−1)1H1 = −1

1
.

Then, assuming ∑
1≤k≤n

(
n

k

)
(−1)kHk = − 1

n
,

we must show that ∑
1≤k≤n+1

(
n+ 1

k

)
(−1)kHk = − 1

n+ 1
.



Exercises from Section 1.2.7 9

But∑
1≤k≤n+1

(
n+ 1

k

)
(−1)kHk

=
∑

1≤k≤n+1

((
n

k

)
+

(
n

k − 1

))
(−1)kHk

=
∑

1≤k≤n+1

(
n

k

)
(−1)kHk +

∑
1≤k≤n+1

(
n

k − 1

)
(−1)kHk

=
∑

1≤k≤n

(
n

k

)
(−1)kHk +

∑
1≤k≤n+1

(
n

k − 1

)
(−1)kHk

= − 1

n
+

∑
1≤k≤n+1

(
n

k − 1

)
(−1)kHk

= − 1

n
−

∑
1≤k≤n+1

(
n

k − 1

)
(−1)k−1Hk

= − 1

n
−

∑
1≤k≤n+1

(
n

k − 1

)
(−1)k−1

(
Hk−1 +

1

k

)

= − 1

n
−

∑
1≤k≤n+1

(
n

k − 1

)
(−1)k−1Hk−1 −

∑
1≤k≤n+1

(
n

k − 1

)
(−1)k−1 1

k

= − 1

n
−
∑

0≤k≤n

(
n

k

)
(−1)kHk −

∑
1≤k≤n+1

(
n

k − 1

)
(−1)k−1 1

k

= − 1

n
−
∑

1≤k≤n

(
n

k

)
(−1)kHk −

∑
1≤k≤n+1

(
n

k − 1

)
(−1)k−1 1

k

= − 1

n
+

1

n
−

∑
1≤k≤n+1

(
n

k − 1

)
(−1)k−1 1

k

= −
∑

1≤k≤n+1

(
n

k − 1

)
(−1)k−1 1

k

= −
∑

1≤k≤n+1

1

n+ 1

(
n+ 1

k

)
(−1)k−1 from Eq. 1.2.6-(7)

=
1

n+ 1

∑
1≤k≤n+1

(
n+ 1

k

)
(−1)k

=
1

n+ 1

−(n+ 1

0

)
(−1)0 +

∑
0≤k≤n+1

(
n+ 1

k

)
(−1)k


=

1

n+ 1

(
−1 + (1− 1)n+1

)
= − 1

n+ 1

as we needed to show.

10. [M20 ] (Summation by parts.) We have used special cases of the general method of summation by parts
in exercise 1.2.4-42 and in the derivation of Eq. (9). Prove the general formula∑

1≤k<n

(ak+1 − ak)bk = anbn − a1b1 −
∑

1≤k<n

ak+1(bk+1 − bk).
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Proposition.
∑

1≤k<n(ak+1 − ak)bk = anbn − a1b1 −
∑

1≤k<n ak+1(bk+1 − bk).

Proof. Let n be an arbitrary positive integer. We must show that∑
1≤k<n

(ak+1 − ak)bk = anbn − a1b1 −
∑

1≤k<n

ak+1(bk+1 − bk).

But ∑
1≤k<n

(ak+1 − ak)bk

=
∑

1≤k<n

ak+1bk −
∑

1≤k<n

akbk

=
∑

1≤k<n

ak+1bk −
∑

0≤k<n−1

ak+1bk+1

=
∑

1≤k<n

ak+1bk −

a1b1 +
∑

1≤k<n

ak+1bk+1 − anbn


= anbn − a1b1 +

∑
1≤k<n

ak+1bk −
∑

1≤k<n

ak+1bk+1

= anbn − a1b1 −

 ∑
1≤k<n

ak+1bk+1 −
∑

1≤k<n

ak+1bk


= anbn − a1b1 −

∑
1≤k<n

ak+1(bk+1 − bk)

as we needed to show.

I 11. [M21 ] Using summation by parts, evaluate∑
1<k≤n

1

k(k − 1)
Hk.
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The sum may be evaluated using summation by parts as∑
1<k≤n

1

k(k − 1)
Hk

=
∑

1<k≤n

k − (k − 1)

k(k − 1)
Hk

=
∑

1<k≤n

(
1

k − 1
− 1

k

)
Hk

=
∑

1<k≤n

(
− 1

(k + 1)− 1
−− 1

k − 1

)
Hk

=
∑

1≤k<n

(
− 1

k + 1
−−1

k

)
Hk+1

= − 1

n
Hn+1 −−

1

1
H1+1 −

∑
1≤k<n

− 1

k + 1

(
H(k+1)+1 −Hk+1

)
= − 1

n

(
Hn +

1

n+ 1

)
+ 1 +

1

2
+
∑

1≤k<n

1

k + 1

(
H(k+1)+1 −Hk+1

)
= − 1

n
Hn −

1

n

1

n+ 1
+ 1 +

1

2
+
∑

1≤k<n

1

k + 1

(
H(k+1)+1 −Hk+1

)
= − 1

n
Hn −

1

n

1

n+ 1
+ 1 +

1

2
+
∑

1≤k<n

1

k + 1

1

k + 2

= − 1

n
Hn −

1

n

1

n+ 1
+ 1 +

1

2
+
∑

1≤k<n

1

(k + 1)(k + 2)

= − 1

n
Hn −

1

n

1

n+ 1
+ 1 +

1

2
+
∑

1≤k<n

(k + 2)− (k + 1)

(k + 1)(k + 2)

= − 1

n
Hn −

1

n

1

n+ 1
+ 1 +

1

2
+
∑

1≤k<n

1

k + 1
− 1

k + 2

= − 1

n
Hn −

1

n

1

n+ 1
+ 1 +

1

2
+
∑

1≤k<n

1

k + 1
−
∑

1≤k<n

1

k + 2

= − 1

n
Hn −

1

n

1

n+ 1
+ 1 +

1

2
+
∑

2≤k≤n

1

k
−

∑
3≤k≤n+1

1

k

= − 1

n
Hn −

1

n

1

n+ 1
+ 1 +

1

2
+
∑

1≤k≤n

1

k
− 1−

 ∑
1≤k≤n

1

k
− 1− 1

2
+

1

n+ 1


= − 1

n
Hn −

1

n

1

n+ 1
+ 1 +

1

2
+Hn − 1−

(
Hn − 1− 1

2
+

1

n+ 1

)
= − 1

n
Hn −

1

n

1

n+ 1
+ 1 +

1

2
+Hn − 1−Hn + 1 +

1

2
− 1

n+ 1

= − 1

n
Hn −

1

n

1

n+ 1
+ 2− 1

n+ 1

= 2−Hn/n−
(

1

n(n+ 1)
+

1

n+ 1

)
= 2−Hn/n−

n+ 1

n(n+ 1)

= 2−Hn/n− 1/n.

I 12. [M10 ] Evaluate H1000
∞ correct to at least 100 decimal places.
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By definition

H1000
∞ =

∑
k≥1

1

k1000
= 1 +

∑
k≥2

1

k1000
= 1 + ε

where ε ≤ 21000−1

21000−1−1 − 1 from exercise 3, and

ε ≤ 21000−1

21000−1 − 1
− 1

=
2999

2999 − 1
− 1

=
2999 − 1 + 1

2999 − 1
− 1

=
1

2999 − 1
+ 1− 1

=
1

2999 − 1

<
1

2998

=
1

10998 ln 2/ ln 10
<

1

10300

so that
H1000
∞ = 1.000 . . .

to at least 100 decimal places.

13. [M22 ] Prove the identity
n∑
k=1

xk

k
= Hn +

n∑
k=1

(
n

k

)
(x− 1)k

k
.

(Note in particular the special case x = 0, which gives us an identity related to exercise 1.2.6-48.)

Proposition.
∑

1≤k≤n
xk

k = Hn +
∑

1≤k≤n
(
n
k

) (x−1)k

k .

Proof. Let n be an arbitrary positive integer and x an arbitrary real. We must show
that ∑

1≤k≤n

xk

k
= Hn +

∑
1≤k≤n

(
n

k

)
(x− 1)k

k
.

In the case that n = 1∑
1≤k≤1

xk

k
= x = 1 +

(
1

1

)
(x− 1) = H1 +

∑
1≤k≤1

(
1

k

)
(x− 1)k

k
.

Then, assuming ∑
1≤k≤n

xk

k
= Hn +

∑
1≤k≤n

(
n

k

)
(x− 1)k

k

we must show that ∑
1≤k≤n+1

xk

k
= Hn+1 +

∑
1≤k≤n+1

(
n+ 1

k

)
(x− 1)k

k
.
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But∑
1≤k≤n+1

xk

k

=
∑

1≤k≤n

xk

k
+
xn+1

n+ 1

=
∑

1≤k≤n

xk

k
+

1

n+ 1
+
xn+1

n+ 1
− 1

n+ 1

=
∑

1≤k≤n

xk

k
+

1

n+ 1
+

1

n+ 1

(
(1 + (x− 1))n+1 − 1

)

=
∑

1≤k≤n

xk

k
+

1

n+ 1
+

1

n+ 1

 ∑
0≤k≤n+1

(
n+ 1

k

)
(x− 1)k − 1


=

∑
1≤k≤n

xk

k
+

1

n+ 1
+

1

n+ 1

 ∑
0≤k≤n+1

(
n+ 1

k

)
(x− 1)k −

(
n+ 1

0

)
(x− 1)0


=

∑
1≤k≤n

xk

k
+

1

n+ 1
+

1

n+ 1

∑
1≤k≤n+1

(
n+ 1

k

)
(x− 1)k

=
∑

1≤k≤n

xk

k
+

1

n+ 1
+

1

n+ 1

∑
1≤k≤n+1

n+ 1

k

(
n

k − 1

)
(x− 1)k from Eq. 1.2.6-(7)

=
∑

1≤k≤n

xk

k
+

1

n+ 1
+

∑
1≤k≤n+1

n+ 1

n+ 1

1

k

(
n

k − 1

)
(x− 1)k

=
∑

1≤k≤n

xk

k
+

1

n+ 1
+

∑
1≤k≤n+1

(
n

k − 1

)
(x− 1)k

k

=
∑

1≤k≤n

xk

k
+

1

n+ 1
+

(
n

n+ 1

)
(x− 1)n+1

n+ 1
+

∑
1≤k≤n+1

(
n

k − 1

)
(x− 1)k

k

= Hn +
∑

1≤k≤n

(
n

k

)
(x− 1)k

k
+

1

n+ 1
+

(
n

n+ 1

)
(x− 1)n+1

n+ 1
+

∑
1≤k≤n+1

(
n

k − 1

)
(x− 1)k

k

= Hn+1 +
∑

1≤k≤n+1

(
n

k

)
(x− 1)k

k
+

∑
1≤k≤n+1

(
n

k − 1

)
(x− 1)k

k

= Hn+1 +
∑

1≤k≤n+1

((
n

k

)
+

(
n

k − 1

))
(x− 1)k

k

= Hn+1 +
∑

1≤k≤n+1

(
n+ 1

k

)
(x− 1)k

k

as we needed to show.

14. [M22 ] Show that
∑n
k=1Hk/k = 1

2 (H2
n +H

(2)
n ), and evaluate

∑n
k=1Hk/(k + 1).

We may prove the identity.

Proposition.
∑

1≤k≤nHk/k = 1
2

(
H2
n +H

(2)
n

)
.
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Proof. Let n be an arbitrary nonnegative integer. We must show that∑
1≤k≤n

Hk/k =
1

2

(
H2
n +H(2)

n

)
.

But ∑
1≤k≤n

Hk/k

∑
1≤k≤n

1

k
Hk

=
∑

1≤k≤n

1

k

∑
1≤j≤k

1

j

=
∑

1≤k≤n

∑
1≤j≤k

1

k

1

j

=
1

2


 ∑

1≤k≤n

1

k

2

+

 ∑
1≤k≤n

1

k2


 from Eq. 1.2.3-(13)

=
1

2

(
H2
n +H(2)

n

)

as we needed to show.
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Thus, we may evaluate the sum as∑
1≤k≤n

Hk/(k + 1)

=
∑

1≤k≤n

1

k + 1
Hk

=
∑

1≤k≤n

1

k + 1

∑
1≤j≤k

1

j

=
∑

1≤k≤n

∑
1≤j≤k

1

k + 1

1

j

=
∑

2≤k≤n+1

∑
1≤j≤k−1

1

k

1

j

=
∑

2≤k≤n+1

1

k

−1

k
+
∑

1≤j≤k

1

j


= −

∑
2≤k≤n+1

1

k

1

k
+

∑
2≤k≤n+1

1

k

∑
1≤j≤k

1

j

= −
∑

2≤k≤n+1

1

k2
+

∑
2≤k≤n+1

1

k

∑
1≤j≤k

1

j

= −

−1 +
∑

1≤k≤n+1

1

k2

+
∑

2≤k≤n+1

1

k

∑
1≤j≤k

1

j

= −
(
−1 +H

(2)
n+1

)
+

∑
2≤k≤n+1

1

k

∑
1≤j≤k

1

j

= 1−H(2)
n+1 +

∑
2≤k≤n+1

1

k

∑
1≤j≤k

1

j

= 1−H(2)
n+1 +

∑
1≤k≤n+1

1

k

∑
1≤j≤k

1

j
− 1

1

∑
1≤j≤1

1

j

= 1−H(2)
n+1 +

∑
1≤k≤n+1

1

k

∑
1≤j≤k

1

j
− 1

= 1−H(2)
n+1 +

∑
1≤k≤n+1

1

k
Hk − 1

= −H(2)
n+1 +

1

2

(
H2
n+1 +H

(2)
n+1

)
= −H(2)

n+1 +
1

2
H2
n+1 +

1

2
H

(2)
n+1

= −H(2)
n+1 +

1

2
H2
n+1 +

1

2
H

(2)
n+1

=
1

2
H2
n+1 −

1

2
H

(2)
n+1

=
1

2

(
H2
n+1 −H

(2)
n+1

)
.

I 15. [M23 ] Express
∑n
k=1H

2
k in terms of n and Hn.



Exercises from Section 1.2.7 16

The sum is∑
1≤k≤n

H2
k

=
∑

1≤k≤n

HkHk

=
∑

1≤k≤n

Hk

∑
1≤j≤k

1

j

=
∑

1≤k≤n

∑
1≤j≤k

Hk
1

j

=
∑

1≤j≤n

∑
j≤k≤n

Hk
1

j

=
∑

1≤j≤n

1

j

∑
j≤k≤n

Hk

=
∑

1≤j≤n

1

j

 ∑
1≤k≤n

Hk −
∑

1≤k≤j−1

Hk


=

∑
1≤j≤n

1

j
(((n+ 1)Hn − n)− ((j − 1 + 1)Hj−1 − (j − 1))) from Eq. (8)

=
∑

1≤j≤n

1

j
((n+ 1)Hn − n− jHj−1 + j − 1)

= ((n+ 1)Hn − n− 1)
∑

1≤j≤n

1

j
−
∑

1≤j≤n

1

j
jHj−1 +

∑
1≤j≤n

1

j
j

= ((n+ 1)Hn − n− 1)Hn −
∑

1≤j≤n

Hj−1 +
∑

1≤j≤n

1

= (n+ 1)H2
n − nHn −Hn −

 ∑
1≤j≤n

Hj −Hn

+ n

= (n+ 1)H2
n − nHn −Hn − ((n+ 1)Hn − n−Hn) + n

= (n+ 1)H2
n − nHn −Hn − (n+ 1)Hn + n+Hn + n

= (n+ 1)H2
n − nHn − (n+ 1)Hn + 2n

= (n+ 1)H2
n − (2n+ 1)Hn + 2n.

16. [18 ] Express the sum 1 + 1
3 + · · ·+ 1

2n−1 in terms of harmonic numbers.
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The sum of all n unit fractions with odd denominators through 2n− 1 may be expressed as∑
1≤k≤n

1

2k − 1
=

∑
1≤k≤2n−1

k odd

1

k

=
∑

1≤k≤2n−1

1

k
−

∑
1≤k≤2n−1

k even

1

k

=
∑

1≤k≤2n−1

1

k
−

∑
1≤k≤n−1

1

2k

= H2n−1 −
1

2

∑
1≤k≤n−1

1

k

= H2n−1 −
1

2
Hn−1.

17. [M24 ] (E. Waring, 1782.) Let p be an odd prime. Show that the numerator of Hp−1 is divisible by
p.

Proposition. If p is an odd prime, the numerator of Hp−1 is divisible by p.

Proof. Let p be an arbitrary odd prime. We must show that the numerator of Hp−1 is
divisible by p. That is, that

(p− 1)!Hp−1 =
∑

1≤k≤p−1

(p− 1)!

k
≡ 0 (mod p).

From exercise 1.2.4-19, the law of inverses, we may find a k′ such that

kk′ ≡ 1 (mod p)

since k ⊥ p. Note that 1 ≤ k′ ≤ p− 1 and that each k′ is unique such that {k|1 ≤ k ≤
p− 1} = {k′|kk′ ≡ 1 (mod p)}. Also note that since p is an odd prime by hypothesis,

− (p−1)
2 is an integer. Then, from Wilson’s theorem

(p− 1)! ≡ −1 (mod p)

we have that ∑
1≤k≤p−1

(p− 1)!

k
≡ −

∑
1≤k≤p−1

1

k

≡ −
∑

1≤k≤p−1

kk′

k

≡ −
∑

1≤k≤p−1

k′

≡ −
∑

1≤k≤p−1

k

≡ −p(p− 1)

2
≡ 0 (mod p)

as we needed to show.
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[Hardy and Wright, An Introduction to the Theory of Numbers, Section 7.8]

18. [M33 ] (J. Selfridge.) What is the highest power of 2 that divides the numerator of 1 + 1
3 + · · · +

1
2n−1?

We want to find the highest power of 2 that divides the numerator of∑
1≤k≤n

1

2k − 1
,

assuming n positive.

Let m be the integer such that n = 2rm for some integer r. We know that m exists and is odd,
as it is the product of the odd primes from the prime factorization of n.

We then have ∑
1≤k≤n

1

2k − 1
=

∑
1≤k≤2rm

1

2k − 1

=
∑

0≤j≤m−1

∑
1≤k≤2r

1

j2r+1 + 2k − 1
,

which we may prove by induction on m.

If m = 1, ∑
1≤k≤2r

1

2k − 1
=

∑
1≤k≤2r

1

(0)2r+1 + 2k − 1
=
∑

0≤j≤0

∑
1≤k≤2r

1

j2r+1 + 2k − 1
.

Then, assuming ∑
1≤k≤2rm

1

2k − 1
=

∑
0≤j≤m−1

∑
1≤k≤2r

1

j2r+1 + 2k − 1
,

we must show that ∑
1≤k≤2r(m+1)

1

2k − 1
=

∑
0≤j≤m

∑
1≤k≤2r

1

j2r+1 + 2k − 1
.

But ∑
1≤k≤2r(m+1)

1

2k − 1
=

∑
1≤k≤2rm

1

2k − 1
+

∑
2rm+1≤k≤2r(m+1)

1

2k − 1

=
∑

0≤j≤m−1

∑
1≤k≤2r

1

j2r+1 + 2k − 1
+

∑
2rm+1≤k≤2r(m+1)

1

2k − 1

=
∑

0≤j≤m−1

∑
1≤k≤2r

1

j2r+1 + 2k − 1
+

∑
1≤k−2rm≤2r

1

2k − 1

=
∑

0≤j≤m−1

∑
1≤k≤2r

1

j2r+1 + 2k − 1
+

∑
1≤k≤2r

1

2(k + 2rm)− 1

=
∑

0≤j≤m−1

∑
1≤k≤2r

1

j2r+1 + 2k − 1
+

∑
1≤k≤2r

1

m2r+1m+ 2k − 1

=
∑

1≤k≤2rm

1

2k − 1
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and hence the identity.

Let
Pj =

∏
1≤k≤2r

j2r+1 + 2k − 1

be the common denominator such that∑
1≤k≤2r

1

j2r+1 + 2k − 1
=

∑
1≤k≤2r

Pj
Pj(j2r+1 + 2k − 1)

=
∑

1≤k≤2r

Pj/(j2
r+1 + 2k − 1)

Pj
.

That is, such that the numerator of
∑

1≤k≤n
1

2k−1 is∑
0≤j≤m−1

∑
1≤k≤2r

Pj
j2r+1 + 2k − 1

,

m sets of 2r terms, each of the form Pj over a distinct odd residue of 2r+1. Each ratio itself
is an integer and a distinct odd residue of 2r+1, and the sum of 2r distinct odd residues is
2r

2

mj = 22rmj for some integer mj by the odd number theorem, mj odd. That is, the numerator
of
∑

1≤k≤n
1

2k−1 is ∑
0≤j≤m−1

22rmj = 22r
∑

0≤j≤m−1

mj .

Since m is odd, we know the sum of m odd terms mj is itself an odd number. Let this be M , so
that the numerator of

∑
1≤k≤n

1
2k−1 is

22rM

for some odd integer M . That is, 22r is the highest power of 2 that divides the numerator of∑
1≤k≤n

1

2k − 1

where m is the odd integer such that n = 2rm for some integer r.

[AMM 67 (1960), 924–925]

I 19. [M30 ] List all nonnegative integers n for which Hn is an integer. [Hint: If Hn has odd numerator
and even denominator, it cannot be an integer.]

The nonnegative integers n for which Hn is an integer are n = 0 and n = 1, since H0 = 0 and
H1 = 1. To see why these are the only n, consider the following. Let k = blg nc with n ≥ 2, so
that 2k ≤ n < 2k+1 and k ≥ 1, and let

P =
∏

1≤i≤n

2km

be the common denominator for each term of Hn, m odd but P even. We know that m exists
and is odd, as it is the product of the odd primes from a prime factorization of the common
denominator. Then

Hn =
∑

1≤j≤n

1

j

=
∑

1≤j≤n

P

Pj

=
∑

1≤j≤n

P/j

P

=
∑

1≤j≤n

P/j

/
P .
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If Hn is an integer, then so is Hn − 1. But

Hn − 1 =
∑

2≤j≤n

P/j

/
P =

M

P

for M =
∑

2≤j≤n P/j. Each term in M is even except for the term with j = 2k, P/2k = m,
which means M is odd. But the divisor P is even. This means their ratio cannot possibly be an
integer, and hence the claim.

20. [HM22 ] There is an analytic way to approach summation problems such as the one leading to Theorem
A in this section: If f(x) =

∑
k≥0 akx

k, and this series converges for x = x0, prove that

∑
k≥0

akx
k
0Hk =

∫ 1

0

f(x0)− f(x0y)

1− y
dy.

Proposition. If f(x) =
∑
k≥0 akx

k and f(x) converges for x = x0 then
∑
k≥0 akx

k
0Hk =∫ 1

0
f(x0)−f(x0y)

1−y dy.

Proof. Let f(x) =
∑
k≥0 akx

k be a series with arbitrary coefficients ak such that f(x)
converges for x = x0. We must show that∑

k≥0

akx
k
0Hk =

∫ 1

0

f(x0)− f(x0y)

1− y
dy.

But ∑
k≥0

akx
k
0Hk =

∑
k≥0

akx
k
0

∑
1≤j≤k

1

j

=
∑
k≥0

akx
k
0

∑
1≤j≤k

∫ 1

0

yj−1dy

=
∑
k≥0

akx
k
0

∫ 1

0

∑
1≤j≤k

yj−1dy

=
∑
k≥0

akx
k
0

∫ 1

0

∑
0≤j≤k−1

yjdy

=
∑
k≥0

akx
k
0

∫ 1

0

y0 − yk−1+1

1− y
dy

=
∑
k≥0

akx
k
0

∫ 1

0

1− yk

1− y
dy

=

∫ 1

0

1

1− y
∑
k≥0

(akx
k
0 − akxk0yk)dy

=

∫ 1

0

1

1− y

∑
k≥0

akx
k
0 −

∑
k≥0

ak(x0y)k

 dy

=

∫ 1

0

1

1− y
(f(x0)− f(x0y)) dy

=

∫ 1

0

f(x0)− f(x0y)

1− y
dy

as we needed to show.
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[AMM 69 (1962), 239; H. W. Gould, Mathematics Magazine 34 (1961), 317–321]

21. [M24 ] Evaluate
∑n
k=1Hk/(n+ 1− k).
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The difference between the sum for n and n+ 1 is given as∑
1≤k≤n+1

Hk

n+ 2− k
−
∑

1≤k≤n

Hk

n+ 1− k

=
Hn+1

n+ 2− (n+ 1)
+
∑

1≤k≤n

Hk

n+ 2− k
−
∑

1≤k≤n

Hk

n+ 1− k

= Hn+1 +
∑

1≤k≤n

Hk

n+ 2− k
−
∑

1≤k≤n

Hk

n+ 1− k

= Hn+1 +
∑

1≤k≤n

(
Hk

n+ 2− k
− Hk

n+ 1− k

)
= Hn+1 +

∑
1≤k≤n

Hk

n+ 2− k
−
∑

1≤k≤n

Hk

n+ 1− k

= Hn+1 +
∑

0≤k≤n−1

Hk+1

n+ 1− k
−
∑

1≤k≤n

Hk

n+ 1− k

= Hn+1 +
H1

n+ 1
−Hn+1 +

∑
1≤k≤n

Hk+1

n+ 1− k
−
∑

1≤k≤n

Hk

n+ 1− k

=
1

n+ 1
+
∑

1≤k≤n

Hk+1

n+ 1− k
−
∑

1≤k≤n

Hk

n+ 1− k

=
1

n+ 1
+
∑

1≤k≤n

Hk + 1
k+1

n+ 1− k
−
∑

1≤k≤n

Hk

n+ 1− k

=
1

n+ 1
+
∑

1≤k≤n

Hk

n+ 1− k
+
∑

1≤k≤n

1

(k + 1)(n+ 1− k)
−
∑

1≤k≤n

Hk

n+ 1− k

=
1

n+ 1
+
∑

1≤k≤n

1

(k + 1)(n+ 1− k)

=
1

n+ 1
+
∑

1≤k≤n

(
1

(n+ 2)(k + 1)
+

1

(n+ 2)(n+ 1− k)

)

=
1

n+ 1
+

1

n+ 2

∑
1≤k≤n

(
1

k + 1
+

1

n+ 1− k

)
=

1

n+ 1
+

1

n+ 2

∑
1≤k≤n

1

k + 1
+

1

n+ 2

∑
1≤k≤n

1

n+ 1− k

=
1

n+ 1
+

1

n+ 2

∑
2≤k≤n+1

1

k
+

1

n+ 2

∑
1≤k≤n

1

k

=
1

n+ 1
+

1

n+ 2

−1

1
+

1

n+ 1
+
∑

1≤k≤n

1

k

+
Hn

n+ 2

=
1

n+ 1
+

1

n+ 2

(
−1

1
+

1

n+ 1
+Hn

)
+

Hn

n+ 2

=
1

n+ 1
+

1

(n+ 1)(n+ 2)
+
Hn − 1

n+ 2
+

Hn

n+ 2

=
1

n+ 1
+

Hn

n+ 2
− 1

n+ 2
+
Hn+1

n+ 2

=
1

(n+ 1)(n+ 2)
+

Hn

n+ 2
+
Hn+1

n+ 2

=
Hn+1

n+ 2
+
Hn+1

n+ 2

= 2
Hn+1

n+ 2
.
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Then, in the case that n = 1

∑
1≤k≤1

Hk

1 + 1− k
=

Hk

1 + 1− k
= H1 = 1 =

9

4
− 5

4
=

(
1 +

1

2

)2

−
(

1 +
1

22

)
= H2

2 −H
(2)
2

and assuming ∑
1≤k≤n

Hk

n+ 1− k
= H2

n+1 −H
(2)
n+1

it may be shown that ∑
1≤k≤n+1

Hk

n+ 2− k
= H2

n+2 −H
(2)
n+2

as ∑
1≤k≤n+1

Hk

n+ 2− k

=
∑

1≤k≤n

Hk

n+ 1− k
+ 2

Hn+1

n+ 2

= H2
n+1 −H

(2)
n+1 + 2

Hn+1

n+ 2

= H2
n+1 + 2

Hn+1

n+ 2
+

1

(n+ 2)2
−H(2)

n+1 −
1

(n+ 2)2

=

(
Hn+1 +

1

n+ 2

)2

−
(
H

(2)
n+1 +

1

(n+ 2)2

)
= H2

n+2 −H
(2)
n+2.

That is ∑
1≤k≤n

Hk

n+ 1− k
= H2

n+1 −H
(2)
n+1.

22. [M28 ] Evaluate
∑n
k=0HkHn−k.
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From summation by parts and exercise 21,∑
0≤k≤n

HkHn−k

=
∑

1≤k≤n

HkHn−k

=

 ∑
1≤j≤n

Hj

Hn−n −
∑

1≤k≤n

 ∑
1≤j≤k

Hj

(Hn−(k+1) −Hn−k
)

= ((n+ 1)Hn − n)H0 +
∑

1≤k≤n−1

((k + 1)Hk − k)
1

n− k

=
∑

1≤k≤n−1

(k + 1)Hk − k
n− k

=
∑

1≤k≤n−1

(n− k + 1)Hn−k − n+ k

k

=
∑

1≤k≤n−1

nHn−k − kHn−k +Hn−k − n+ k

k

=
∑

1≤k≤n−1

nHn−k

k
−

∑
1≤k≤n−1

kHn−k

k
+

∑
1≤k≤n−1

Hn−k

k
−

∑
1≤k≤n−1

n

k
+

∑
1≤k≤n−1

k

k

= n
∑

1≤k≤n−1

Hn−k

k
−

∑
1≤k≤n−1

Hn−k +
∑

1≤k≤n−1

Hn−k

k
− n

∑
1≤k≤n−1

1

k
+

∑
1≤k≤n−1

1

= n
∑

1≤k≤n−1

Hn−k

k
−

∑
1≤k≤n−1

Hn−k +
∑

1≤k≤n−1

Hn−k

k
− nHn−1 + n− 1

= n
∑

1≤k≤n−1

Hk

n− k
−

∑
1≤k≤n−1

Hk +
∑

1≤k≤n−1

Hk

n− k
− n(Hn − 1)

= (n+ 1)
∑

1≤k≤n−1

Hk

n− k
− (((n− 1) + 1)Hn−1 − (n− 1))− n(Hn − 1)

= (n+ 1)
∑

1≤k≤n−1

Hk

n− k
− nHn−1 + n− 1− n(Hn − 1)

= (n+ 1)
∑

1≤k≤n−1

Hk

n− k
− n(Hn − 1)− n(Hn − 1)

= (n+ 1)
∑

1≤k≤n−1

Hk

n− k
− 2n(Hn − 1)

= (n+ 1)
(
H2
n −H(2)

n

)
− 2n(Hn − 1).

I 23. [HM20 ] By considering the function Γ′(x)/Γ(x), show how we can get a natural generalization of Hn

to noninteger values of n. You may use the fact that Γ′(1) = −γ, anticipating the next exercise.

We can get a natural generalization of Hn to noninteger values of n by considering the function
Γ′(x)/Γ(x), using the fact that Γ′(1) = −γ.

By definition,
Γ(x+ 1) = xΓ(x),
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and so

Γ′(x+ 1) = (xΓ(x))
′

= x′Γ(x) + xΓ′(x)

= Γ(x) + xΓ′(x)

if and only if

Γ′(x+ 1)

Γ(x+ 1)
=

Γ(x) + xΓ′(x)

Γ(x+ 1)

=
Γ(x) + xΓ′(x)

xΓ(x)

=
Γ(x)

xΓ(x)
+
xΓ′(x)

xΓ(x)

=
1

x
+

Γ′(x)

Γ(x)
,

giving us a natural generalization of Hn to noninteger values of n as

Hx =
Γ′(x+ 1)

Γ(x+ 1)
+ γ.

Note that in the case that x = 0

H0 =
Γ′(1)

Γ(1)
+ γ =

−γ
1

+ γ = 0,

and assuming

Hx =
Γ′(x+ 1)

Γ(x+ 1)
+ γ

we have that

Hx+1 = Hx +
1

x+ 1

=
Γ′(x+ 1)

Γ(x+ 1)
+ γ +

1

x+ 1

=
Γ′(x+ 1)

Γ(x+ 1)
+

1

x+ 1
γ

=
Γ′(x+ 2)

Γ(x+ 2)
+ γ,

proving the identity holds for all nonnegative integers x.

24. [HM21 ] Show that

xeγx
∏
k≥1

((
1 +

x

k

)
e−x/k

)
=

1

Γ(x)
.

(Consider the partial products of this infinite product.)

Proposition. xeγx
∏
k≥1

((
1 + x

k

)
e−x/k

)
= 1

Γ(x) .
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Proof. Let x be an arbitrary real. We must show that

xeγx
∏
k≥1

((
1 +

x

k

)
e−x/k

)
=

1

Γ(x)
.

But since
γ = lim

n→∞
(Hn − lnn)

we have that

xeγx
∏
k≥1

((
1 +

x

k

)
e−x/k

)
= xeγx lim

n→∞

∏
1≤k≤n

((
1 +

x

k

)
e−x/k

)
= lim
n→∞

xeγx
∏

1≤k≤n

((
1 +

x

k

)
e−x/k

)
= lim
n→∞

xe(Hn−lnn)x
∏

1≤k≤n

((
1 +

x

k

)
e−x/k

)
= lim
n→∞

x
exHn

ex lnn

∏
1≤k≤n

((
1 +

x

k

)
e−x/k

)
= lim
n→∞

x
exHn

nx

∏
1≤k≤n

((
1 +

x

k

)
e−x/k

)
= lim
n→∞

x

nx
exHn

∏
1≤k≤n

((
1 +

x

k

)
e−x/k

)

= lim
n→∞

x

nx
exHn

 ∏
1≤k≤n

(
1 +

x

k

) ∏
1≤k≤n

e−x/k


= lim
n→∞

x

nx
exHn

 ∏
1≤k≤n

(
1 +

x

k

) e−x
∑

1≤k≤n 1/k

= lim
n→∞

x

nx
exHn

 ∏
1≤k≤n

(
1 +

x

k

) e−xHn

= lim
n→∞

x

nx

∏
1≤k≤n

(
1 +

x

k

)
= lim
n→∞

x

nx

∏
1≤k≤n

x+ k

k

= lim
n→∞

x

nx

∏
1≤k≤n(x+ k)∏

1≤k≤n k

= lim
n→∞

x

nx

∏
1≤k≤n(x+ k)

n!

= lim
n→∞

x
∏

1≤k≤n(x+ k)

nxn!

=
1

Γ(x)

as we needed to show.


