Exercises from Section 1.2.7

Tord M. Johnson

April 27, 2015

1. [01] What are H_{0}, H_{1}, and H_{2} ?

By definition, we have

$$
\begin{gathered}
H_{0}=\sum_{1 \leq k \leq 0} \frac{1}{k}=0 \\
H_{1}=\sum_{1 \leq k \leq 1} \frac{1}{k}=\frac{1}{1}=1
\end{gathered}
$$

and

$$
H_{2}=\sum_{1 \leq k \leq 2} \frac{1}{k}=\frac{1}{1}+\frac{1}{2}=\frac{3}{2}
$$

2. [13] Show that the simple argument used in the text to prove that $H_{2^{m}} \geq 1+m / 2$ can be slightly modified to prove that $H_{2^{m}} \leq 1+m$.

We can show that the simple argument used in the text to prove that $H_{2^{m}} \geq 1+m / 2$ may be slightly modified to prove that $H_{2^{m}} \leq 1+m$, by noting that for each term, $1 /\left(2^{m}+k\right) \leq 1 / 2^{m}$, as shown in the proof by induction below.

Proposition. $H_{2^{m}} \leq m+1$.
Proof. Let m be an arbitrary integer such that $m \geq 0$. We must show that $H_{2^{m}} \leq m+1$.
In the case that $m=0$,

$$
H_{2^{0}}=H_{1}=1 \leq 0+1
$$

Then, assuming

$$
H_{2^{m}} \leq m+1
$$

we must show that

$$
H_{2^{m+1}} \leq m+2
$$

But

$$
\begin{aligned}
H_{2^{m+1}} & =\sum_{1 \leq k \leq 2^{m+1}} \frac{1}{k} \\
& =\sum_{1 \leq k \leq 2^{m}} \frac{1}{k}+\sum_{2^{m}+1 \leq k \leq 2^{m+1}} \frac{1}{k} \\
& =H_{2^{m}}+\sum_{2^{m}+1 \leq k \leq 2^{m+1}} \frac{1}{k} \\
& =H_{2^{m}}+\sum_{1 \leq k \leq 2^{m}} \frac{1}{2^{m}+k} \\
& \leq H_{2^{m}}+\sum_{1 \leq k \leq 2^{m}} \frac{1}{2^{m}} \\
& =H_{2^{m}}+\frac{2^{m}}{2^{m}} \\
& =H_{2^{m}}+1 \\
& \leq m+1+1 \\
& =m+2
\end{aligned}
$$

as we needed to show.
3. [M21] Generalize the argument used in the previous exercise to show that, for $r>1$, the sum $H_{n}^{(r)}$ remains bounded for all n. Find an upper bound.

Proposition. $H_{n}^{(r)} \leq \frac{2^{r-1}}{2^{r-1}-1}$ for $r>1$.
Proof. Let n be an arbitrary nonnegative integer and r an arbitrary real such that $r>1$. We must show that

$$
H_{n}^{(r)} \leq \frac{2^{r-1}}{2^{r-1}-1}
$$

First note that for arbitrary $m \geq 1$, we may show that

$$
\sum_{1 \leq k \leq 2^{m-1}} \frac{1}{k^{r}} \leq \sum_{0 \leq k<m} \frac{2^{k}}{2^{k r}}
$$

If $m=1$,

$$
\begin{aligned}
\sum_{1 \leq k \leq 2^{1-1}} \frac{1}{k^{r}} & =\sum_{1 \leq k \leq 0} \frac{1}{k^{r}} \\
& =0 \\
& \leq 1 \\
& =\frac{2^{0}}{2^{(0) r}} \\
& =\sum_{0 \leq k<1} \frac{2^{k}}{2^{k r}}
\end{aligned}
$$

Then assuming

$$
\sum_{1 \leq k \leq 2^{m-1}} \frac{1}{k^{r}} \leq \sum_{0 \leq k<m} \frac{2^{k}}{2^{k r}}
$$

we must show that

$$
\sum_{1 \leq k \leq 2^{m}} \frac{1}{k^{r}} \leq \sum_{0 \leq k<m+1} \frac{2^{k}}{2^{k r}}
$$

But

$$
\begin{aligned}
\sum_{1 \leq k \leq 2^{m}} \frac{1}{k^{r}} & =\sum_{1 \leq k \leq 2^{m-1}} \frac{1}{k^{r}}+\sum_{2^{m-1}+1 \leq k \leq 2^{m}} \frac{1}{k^{r}} \\
& \leq \sum_{0 \leq k<m} \frac{2^{k}}{2^{k r}}+\sum_{2^{m-1}+1 \leq k \leq 2^{m}} \frac{1}{k^{r}} \\
& =\sum_{0 \leq k<m} \frac{2^{k}}{2^{k r}}+\sum_{1 \leq k \leq 2^{m-1}} \frac{1}{\left(2^{m-1}+k\right)^{r}} \\
& \leq \sum_{0 \leq k<m} \frac{2^{k}}{2^{k r}}+\sum_{1 \leq k \leq 2^{m-1}} \frac{1}{\left(2^{m-1}\right)^{r}} \\
& =\sum_{0 \leq k<m} \frac{2^{k}}{2^{k r}}+\frac{2^{m-1}}{\left(2^{m-1}\right)^{r}} \\
& =\sum_{0 \leq k<m} \frac{2^{k}}{2^{k r}}+\frac{2^{m-1}}{2^{(m-1) r}} \\
& \leq \sum_{0 \leq k<m} \frac{2^{k}}{2^{k r}}+\frac{2^{m}}{2^{m r}} \\
& =\sum_{0 \leq k<m+1} \frac{2^{k}}{2^{k r}}
\end{aligned}
$$

and hence the noted inequality. We now continue with the main proof.
Since $2^{r-1}>1$, we have both in the case that $n=0$ that

$$
H_{0}^{(r)}=\sum_{1 \leq k \leq 0} \frac{1}{k^{r}}=0 \leq \frac{2^{r-1}}{2^{r-1}-1}
$$

and in the case that $n=1=2^{m-1}$ for $m=1$ that

$$
H_{1}^{(r)}=\sum_{1 \leq k \leq 1} \frac{1}{k^{r}}=1 \leq \frac{2^{r-1}}{2^{r-1}-1}
$$

Then, for arbitrary $m \geq 1$, and since $2^{-m r+m+r-1}=\frac{2^{r-1}}{2^{(r-1) m}}<1<2^{r-1}$,

$$
\begin{aligned}
& H_{2^{m-1}}^{(r)}=\sum_{1 \leq k \leq 2^{m-1}} \frac{1}{k^{r}} \\
& \leq \sum_{0 \leq k<m} \frac{2^{k}}{2^{k r}} \\
&=\sum_{0 \leq k<m} \frac{1}{2^{(r-1) k}} \\
&=\sum_{0 \leq k \leq m-1} 2^{(-r+1) k} \\
&=\frac{2^{(-r+1) 0}-2^{(-r+1) m}}{1-2^{-r+1}} \\
&=\frac{1-2^{(-r+1) m}}{1-2^{-r+1}} \\
&=\frac{\left(2^{m(r-1)}-1\right) / 2^{m(r-1)}}{\left(2^{r-1}-1\right) / 2^{r-1}} \\
&=\frac{2^{r-1}\left(2^{m(r-1)}-1\right)}{2^{m(r-1)}\left(2^{r-1}-1\right)} \\
&=\frac{2^{m(r-1)+(r-1)}-2^{r-1}}{2^{m(r-1)+(r-1)}-2^{m(r-1)}} \\
&=\frac{2^{-m(r-1)}\left(2^{m(r-1)+(r-1)}-2^{r-1}\right)}{2^{r-1}-1} \\
&=\frac{2^{-m(r-1)} 2^{m(r-1)+(r-1)}-2^{-m(r-1)} 2^{r-1}}{2^{r-1}-1} \\
&=\frac{2^{r-1}-2^{-m(r-1)+r-1}}{2^{r-1}-1} \\
& \leq \frac{2^{r-1}-2^{-m r+m+r-1}}{2^{r-1}-1} \\
& 2^{r-1}-1 \\
& 2^{r-1} \\
&=1
\end{aligned}
$$

as we needed to show.

- 4. [10] Decide which of the following statements are true for all positive integers n : (a) $H_{n}<\ln n$. (b) $H_{n}>\ln n$. (c) $H_{n}>\ln n+\gamma$.

In summary, (a) is false, while (b) and (c) are true, the justification for each enumerated below.
a) $H_{n}<\ln n$ is not true for all positive integers n, as may be seen by considering $n=1$, in which case, $H_{1}=1 \nless 0=\ln 1$.
b) $H_{n}>\ln n$ is true for all positive integers n, as may be deduced from Eq. (3), since $\gamma+\frac{1}{2 n}-$ $\frac{1}{12 n^{2}}+\frac{1}{120 n^{4}}-\epsilon>0$.
c) $H_{n}>\ln n+\gamma$ is true for all positive integers n, as may also be deduced from Eq. (3), since $\frac{1}{2 n}-\frac{1}{12 n^{2}}+\frac{1}{120 n^{4}}-\epsilon>0$.
5. [15] Give the value of H_{10000} to 15 decimal places, using the tables in Appendix A.

From Eq. (3) we know

$$
H_{10000}=\ln 10000+\gamma+\frac{1}{2(10000)}-\frac{1}{12(10000)^{2}}+\frac{1}{120(10000)^{4}}-\epsilon
$$

for $0<\epsilon<\frac{1}{252(10000)^{6}}$. Letting $\epsilon^{\prime}=\frac{1}{120(10000)^{4}}-\epsilon>0$, since

$$
\begin{aligned}
\epsilon^{\prime} & <\frac{1}{120(10000)^{4}} \\
& =\frac{1}{1.2 \times 10^{18}} \\
& <\frac{1}{10^{18}}
\end{aligned}
$$

we may ignore ϵ^{\prime} in order to approximate H_{10000} to only 15 decimal places as

$$
\begin{aligned}
H_{10000} & \approx \ln 10000+\gamma+\frac{1}{2(10,000)}-\frac{1}{12(10,000)^{2}} \\
& =4 \ln 10+\gamma+\frac{59999}{1200000000}
\end{aligned}
$$

Given

$$
\begin{aligned}
\ln 10 & =2.3025850929940456+ \\
\gamma & =0.5772156649015328+ \\
\frac{59999}{1200000000} & =0.0000499991666666+
\end{aligned}
$$

we may compute the sum as

$$
\begin{array}{r}
2.3025850929940456 \\
2.3025850929940456 \\
2.3025850929940456 \\
2.3025850929940456 \\
0.5772156649015328 \\
+\quad 0.0000499991666666 \\
\hline 9.7876060360443818
\end{array}
$$

That is,

$$
H_{10000} \approx 9.787606036044382 \ldots
$$

6. [M15] Prove that the harmonic numbers are directly related to Stirling's numbers, which were introduced in the previous section; in fact,

$$
H_{n}=\left[\begin{array}{c}
n+1 \\
2
\end{array}\right] / n!
$$

Proposition. $H_{n}=\left[\begin{array}{c}n+1 \\ 2\end{array}\right] / n!$.
Proof. Let n be an arbitrary nonnegative integer. We must show that

$$
H_{n}=\left[\begin{array}{c}
n+1 \\
2
\end{array}\right] / n!
$$

In the case that $n=0$,

$$
\begin{aligned}
H_{0} & =\sum_{1 \leq k \leq 0} \frac{1}{k} \\
& =0 \\
& =\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& =\left[\begin{array}{c}
0+1 \\
2
\end{array}\right] / 0!
\end{aligned}
$$

Then, assuming

$$
H_{n}=\left[\begin{array}{c}
n+1 \\
2
\end{array}\right] / n!
$$

we must show that

$$
H_{n+1}=\left[\begin{array}{c}
n+2 \\
2
\end{array}\right] /(n+1)!
$$

But

$$
\begin{array}{rlr}
H_{n+1} & =H_{n}+\frac{1}{n+1} \\
& =\left(\left[\begin{array}{c}
n+1 \\
2
\end{array}\right] / n!\right)+\frac{1}{n+1} \\
& =\left((n+1)\left[\begin{array}{c}
n+1 \\
2
\end{array}\right]+n!\right) /(n+1)! \\
& =\left((n+1)\left[\begin{array}{c}
n+1 \\
2
\end{array}\right]+\left[\begin{array}{c}
n+1 \\
1
\end{array}\right]\right) /(n+1)! & \text { from Eq. (50) } \\
& =\left((n+1)\left[\begin{array}{c}
n+1 \\
2
\end{array}\right]+\left[\begin{array}{c}
n+1 \\
2-1
\end{array}\right]\right) /(n+1)! \\
& =\left[\begin{array}{c}
n+2 \\
2
\end{array}\right] /(n+1)! & \tag{46}
\end{array}
$$

as we needed to show.
7. [M21] Let $T(m, n)=H_{m}+H_{n}-H_{m n}$. (a) Show that when m or n increases, $T(m, n)$ never increases (assuming that m and n are positive). (b) Compute the minimum and maximum values of $T(m, n)$ for $m, n>0$.

We may provide a proof and determine bounds.
a) We may show that $T(m, n)$ never increases.

Proposition. $T(m+1, n) \leq T(m, n)$ for m, n positive integers.
Proof. Define $T(m, n)$ as

$$
T(m, n)=H_{m}+H_{n}-H_{m n}
$$

and let m and n be arbitrary positive integers. We must show that

$$
T(m+1, n)-T(m, n) \leq 0
$$

But

$$
\begin{aligned}
T(m+1, n)-T(m, n) & =\left(H_{m+1}+H_{n}-H_{(m+1) n}\right)-\left(H_{m}+H_{n}-H_{m n}\right) \\
& =H_{m+1}+H_{n}-H_{(m+1) n}-H_{m}-H_{n}+H_{m n} \\
& =H_{m+1}-H_{(m+1) n}-H_{m}+H_{m n} \\
& =\frac{1}{m+1}-\sum_{m n+1 \leq k \leq m n+n} \frac{1}{k} \\
& \leq \frac{1}{m+1}-\sum_{m n+1 \leq k \leq m n+n} \frac{1}{m n+n} \\
& =\frac{1}{m+1}-\frac{n}{m n+n} \\
& =\frac{1}{m+1}-\frac{1}{m+1} \\
& =0
\end{aligned}
$$

as we needed to show.
b) We may determine both the lower and upper bounds of $T(m, n)$, for m, n positive integers. Since $T(m, n)$ never increases, we know that the lower bound corresponds to the limit as $m \rightarrow \infty$, and from Eq. (3),

$$
\lim _{m \rightarrow \infty} T(m, n)=\lim _{m \rightarrow \infty}\left(H_{m}+H_{n}-H_{m n}\right)=\lim _{m \rightarrow \infty}\left(H_{m}-\ln m\right)=\gamma
$$

Similarly, since $T(m, n)$ never increases, we know that the upper bound corresponds to $m=n=1$, and

$$
T(1,1)=H_{1}+H_{1}-H_{1}=H_{1}=1
$$

[AMM 70 (1963), 575-577]
8. [HM18] Compare Eq. (8) with $\sum_{k=1}^{n} \ln k$; estimate the difference as a function of n.

Given Eq. (8)

$$
\sum_{1 \leq k \leq n} H_{k}=(n+1) H_{n}-n
$$

we may estimate the difference with $\sum_{1 \leq k \leq n} \ln k$. First, we note from Eq. (3) that

$$
\begin{aligned}
\sum_{1 \leq k \leq n} H_{k} & =(n+1) H_{n}-n \\
& \approx(n+1)(\ln n+\gamma+1 / 2 n)-n \\
& =(n+1) \ln n+(n+1) \gamma+(n+1) / 2 n-n \\
& =(n+1) \ln n-n+(n+1) \gamma+(n+1) / 2 n \\
& \approx(n+1) \ln n-n+(n+1) \gamma+1 / 2 \\
& =(n+1) \ln n-n+n \gamma+\gamma+1 / 2 \\
& =(n+1) \ln n-n(1-\gamma)+(\gamma+1 / 2)
\end{aligned}
$$

Second, we note from Stirling's approximation that

$$
\begin{aligned}
\sum_{1 \leq k \leq n} \ln k & =\ln n! \\
& \approx \ln \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \\
& =\ln \sqrt{2 \pi}+\frac{1}{2} \ln n+n \ln n-n \ln e \\
& =\ln \sqrt{2 \pi}+\left(n+\frac{1}{2}\right) \ln n-n \\
& =\left(n+\frac{1}{2}\right) \ln n-n+\ln \sqrt{2 \pi}
\end{aligned}
$$

And so,

$$
\begin{aligned}
& \sum_{1 \leq k \leq n} H_{k}-\sum_{1 \leq k \leq n} \ln k \\
& \quad \approx\left((n+1) \ln n-n(1-\gamma)+\left(\gamma+\frac{1}{2}\right)\right)-\left(\left(n+\frac{1}{2}\right) \ln n-n+\ln \sqrt{2 \pi}\right) \\
& \quad=(n+1) \ln n+-n+\gamma n+\gamma+\frac{1}{2}-\left(n+\frac{1}{2}\right) \ln n+n-\ln \sqrt{2 \pi} \\
& \quad=\gamma n+\left(n+1-n-\frac{1}{2}\right) \ln n+\gamma+\frac{1}{2}-\ln \sqrt{2 \pi} \\
& \quad=\gamma n+\frac{1}{2} \ln n+\gamma+\frac{1}{2}-\ln \sqrt{2 \pi} \\
& \quad \approx \gamma n+\frac{1}{2} \ln n+.158 .
\end{aligned}
$$

- 9. [M18] Theorem A applies only when $x>0$; what is the value of the sum considered when $x=$ -1 ?

We make a proposition and offer proof in the case that $x=-1$.

Proposition. $\sum_{1 \leq k \leq n}\binom{n}{k}(-1)^{k} H_{k}=-\frac{1}{n}$.
Proof. Let n be an arbitrary positive integer. We must show that

$$
\sum_{1 \leq k \leq n}\binom{n}{k}(-1)^{k} H_{k}=-\frac{1}{n}
$$

If $n=1$,

$$
\sum_{1 \leq k \leq 1}\binom{1}{k}(-1)^{k} H_{k}=\binom{1}{1}(-1)^{1} H_{1}=-\frac{1}{1}
$$

Then, assuming

$$
\sum_{1 \leq k \leq n}\binom{n}{k}(-1)^{k} H_{k}=-\frac{1}{n}
$$

we must show that

$$
\sum_{1 \leq k \leq n+1}\binom{n+1}{k}(-1)^{k} H_{k}=-\frac{1}{n+1}
$$

But

$$
\begin{align*}
& \sum_{1 \leq k \leq n+1}\binom{n+1}{k}(-1)^{k} H_{k} \\
& =\sum_{1 \leq k \leq n+1}\left(\binom{n}{k}+\binom{n}{k-1}\right)(-1)^{k} H_{k} \\
& =\sum_{1 \leq k \leq n+1}\binom{n}{k}(-1)^{k} H_{k}+\sum_{1 \leq k \leq n+1}\binom{n}{k-1}(-1)^{k} H_{k} \\
& =\sum_{1 \leq k \leq n}\binom{n}{k}(-1)^{k} H_{k}+\sum_{1 \leq k \leq n+1}\binom{n}{k-1}(-1)^{k} H_{k} \\
& =-\frac{1}{n}+\sum_{1 \leq k \leq n+1}\binom{n}{k-1}(-1)^{k} H_{k} \\
& =-\frac{1}{n}-\sum_{1 \leq k \leq n+1}\binom{n}{k-1}(-1)^{k-1} H_{k} \\
& =-\frac{1}{n}-\sum_{1 \leq k \leq n+1}\binom{n}{k-1}(-1)^{k-1}\left(H_{k-1}+\frac{1}{k}\right) \\
& =-\frac{1}{n}-\sum_{1 \leq k \leq n+1}\binom{n}{k-1}(-1)^{k-1} H_{k-1}-\sum_{1 \leq k \leq n+1}\binom{n}{k-1}(-1)^{k-1} \frac{1}{k} \\
& =-\frac{1}{n}-\sum_{0 \leq k \leq n}\binom{n}{k}(-1)^{k} H_{k}-\sum_{1 \leq k \leq n+1}\binom{n}{k-1}(-1)^{k-1} \frac{1}{k} \\
& =-\frac{1}{n}-\sum_{1 \leq k \leq n}\binom{n}{k}(-1)^{k} H_{k}-\sum_{1 \leq k \leq n+1}\binom{n}{k-1}(-1)^{k-1} \frac{1}{k} \\
& =-\frac{1}{n}+\frac{1}{n}-\sum_{1 \leq k \leq n+1}\binom{n}{k-1}(-1)^{k-1} \frac{1}{k} \\
& =-\sum_{1 \leq k \leq n+1}\binom{n}{k-1}(-1)^{k-1} \frac{1}{k} \\
& =-\sum_{1 \leq k \leq n+1} \frac{1}{n+1}\binom{n+1}{k}(-1)^{k-1} \tag{7}\\
& =\frac{1}{n+1} \sum_{1 \leq k \leq n+1}\binom{n+1}{k}(-1)^{k} \\
& =\frac{1}{n+1}\left(-\binom{n+1}{0}(-1)^{0}+\sum_{0 \leq k \leq n+1}\binom{n+1}{k}(-1)^{k}\right) \\
& =\frac{1}{n+1}\left(-1+(1-1)^{n+1}\right) \\
& =-\frac{1}{n+1}
\end{align*}
$$

as we needed to show.
10. [M20] (Summation by parts.) We have used special cases of the general method of summation by parts in exercise 1.2.4-42 and in the derivation of Eq. (9). Prove the general formula

$$
\sum_{1 \leq k<n}\left(a_{k+1}-a_{k}\right) b_{k}=a_{n} b_{n}-a_{1} b_{1}-\sum_{1 \leq k<n} a_{k+1}\left(b_{k+1}-b_{k}\right)
$$

Proposition. $\sum_{1 \leq k<n}\left(a_{k+1}-a_{k}\right) b_{k}=a_{n} b_{n}-a_{1} b_{1}-\sum_{1 \leq k<n} a_{k+1}\left(b_{k+1}-b_{k}\right)$.
Proof. Let n be an arbitrary positive integer. We must show that

$$
\sum_{1 \leq k<n}\left(a_{k+1}-a_{k}\right) b_{k}=a_{n} b_{n}-a_{1} b_{1}-\sum_{1 \leq k<n} a_{k+1}\left(b_{k+1}-b_{k}\right)
$$

But

$$
\begin{aligned}
& \sum_{1 \leq k<n}\left(a_{k+1}-a_{k}\right) b_{k} \\
& =\sum_{1 \leq k<n} a_{k+1} b_{k}-\sum_{1 \leq k<n} a_{k} b_{k} \\
& =\sum_{1 \leq k<n} a_{k+1} b_{k}-\sum_{0 \leq k<n-1} a_{k+1} b_{k+1} \\
& =\sum_{1 \leq k<n} a_{k+1} b_{k}-\left(a_{1} b_{1}+\sum_{1 \leq k<n} a_{k+1} b_{k+1}-a_{n} b_{n}\right) \\
& =a_{n} b_{n}-a_{1} b_{1}+\sum_{1 \leq k<n} a_{k+1} b_{k}-\sum_{1 \leq k<n} a_{k+1} b_{k+1} \\
& =a_{n} b_{n}-a_{1} b_{1}-\left(\sum_{1 \leq k<n} a_{k+1} b_{k+1}-\sum_{1 \leq k<n} a_{k+1} b_{k}\right) \\
& =a_{n} b_{n}-a_{1} b_{1}-\sum_{1 \leq k<n} a_{k+1}\left(b_{k+1}-b_{k}\right)
\end{aligned}
$$

as we needed to show.

- 11. [M21] Using summation by parts, evaluate

$$
\sum_{1<k \leq n} \frac{1}{k(k-1)} H_{k}
$$

The sum may be evaluated using summation by parts as

$$
\begin{aligned}
& \sum_{1<k \leq n} \frac{1}{k(k-1)} H_{k} \\
& =\sum_{1<k \leq n} \frac{k-(k-1)}{k(k-1)} H_{k} \\
& =\sum_{1<k \leq n}\left(\frac{1}{k-1}-\frac{1}{k}\right) H_{k} \\
& =\sum_{1<k \leq n}\left(-\frac{1}{(k+1)-1}--\frac{1}{k-1}\right) H_{k} \\
& =\sum_{1 \leq k<n}\left(-\frac{1}{k+1}--\frac{1}{k}\right) H_{k+1} \\
& =-\frac{1}{n} H_{n+1}--\frac{1}{1} H_{1+1}-\sum_{1 \leq k<n}-\frac{1}{k+1}\left(H_{(k+1)+1}-H_{k+1}\right) \\
& =-\frac{1}{n}\left(H_{n}+\frac{1}{n+1}\right)+1+\frac{1}{2}+\sum_{1 \leq k<n} \frac{1}{k+1}\left(H_{(k+1)+1}-H_{k+1}\right) \\
& =-\frac{1}{n} H_{n}-\frac{1}{n} \frac{1}{n+1}+1+\frac{1}{2}+\sum_{1 \leq k<n} \frac{1}{k+1}\left(H_{(k+1)+1}-H_{k+1}\right) \\
& =-\frac{1}{n} H_{n}-\frac{1}{n} \frac{1}{n+1}+1+\frac{1}{2}+\sum_{1 \leq k<n} \frac{1}{k+1} \frac{1}{k+2} \\
& =-\frac{1}{n} H_{n}-\frac{1}{n} \frac{1}{n+1}+1+\frac{1}{2}+\sum_{1 \leq k<n} \frac{1}{(k+1)(k+2)} \\
& =-\frac{1}{n} H_{n}-\frac{1}{n} \frac{1}{n+1}+1+\frac{1}{2}+\sum_{1 \leq k<n} \frac{(k+2)-(k+1)}{(k+1)(k+2)} \\
& =-\frac{1}{n} H_{n}-\frac{1}{n} \frac{1}{n+1}+1+\frac{1}{2}+\sum_{1 \leq k<n} \frac{1}{k+1}-\frac{1}{k+2} \\
& =-\frac{1}{n} H_{n}-\frac{1}{n} \frac{1}{n+1}+1+\frac{1}{2}+\sum_{1 \leq k<n} \frac{1}{k+1}-\sum_{1 \leq k<n} \frac{1}{k+2} \\
& =-\frac{1}{n} H_{n}-\frac{1}{n} \frac{1}{n+1}+1+\frac{1}{2}+\sum_{2 \leq k \leq n} \frac{1}{k}-\sum_{3 \leq k \leq n+1} \frac{1}{k} \\
& =-\frac{1}{n} H_{n}-\frac{1}{n} \frac{1}{n+1}+1+\frac{1}{2}+\sum_{1 \leq k \leq n} \frac{1}{k}-1-\left(\sum_{1 \leq k \leq n} \frac{1}{k}-1-\frac{1}{2}+\frac{1}{n+1}\right) \\
& =-\frac{1}{n} H_{n}-\frac{1}{n} \frac{1}{n+1}+1+\frac{1}{2}+H_{n}-1-\left(H_{n}-1-\frac{1}{2}+\frac{1}{n+1}\right) \\
& =-\frac{1}{n} H_{n}-\frac{1}{n} \frac{1}{n+1}+1+\frac{1}{2}+H_{n}-1-H_{n}+1+\frac{1}{2}-\frac{1}{n+1} \\
& =-\frac{1}{n} H_{n}-\frac{1}{n} \frac{1}{n+1}+2-\frac{1}{n+1} \\
& =2-H_{n} / n-\left(\frac{1}{n(n+1)}+\frac{1}{n+1}\right) \\
& =2-H_{n} / n-\frac{n+1}{n(n+1)} \\
& =2-H_{n} / n-1 / n \text {. }
\end{aligned}
$$

- 12. [M10] Evaluate H_{∞}^{1000} correct to at least 100 decimal places.

By definition

$$
H_{\infty}^{1000}=\sum_{k \geq 1} \frac{1}{k^{1000}}=1+\sum_{k \geq 2} \frac{1}{k^{1000}}=1+\epsilon
$$

where $\epsilon \leq \frac{2^{1000-1}}{2^{1000-1}-1}-1$ from exercise 3 , and

$$
\begin{array}{rlr}
\epsilon & \leq \frac{2^{1000-1}}{2^{1000-1}-1}-1 \\
& =\frac{2^{999}}{2^{999}-1}-1 \\
& =\frac{2^{999}-1+1}{2^{999}-1}-1 \\
& =\frac{1}{2^{999}-1}+1-1 \\
& =\frac{1}{2^{999}-1} \\
& <\frac{1}{2^{998}} \\
& =\frac{1}{10^{998} \ln 2 / \ln 10} & <\frac{1}{10^{300}}
\end{array}
$$

so that

$$
H_{\infty}^{1000}=1.000 \ldots
$$

to at least 100 decimal places.
13. [M22] Prove the identity

$$
\sum_{k=1}^{n} \frac{x^{k}}{k}=H_{n}+\sum_{k=1}^{n}\binom{n}{k} \frac{(x-1)^{k}}{k}
$$

(Note in particular the special case $x=0$, which gives us an identity related to exercise 1.2.6-48.)

Proposition. $\sum_{1 \leq k \leq n} \frac{x^{k}}{k}=H_{n}+\sum_{1 \leq k \leq n}\binom{n}{k} \frac{(x-1)^{k}}{k}$.
Proof. Let n be an arbitrary positive integer and x an arbitrary real. We must show that

$$
\sum_{1 \leq k \leq n} \frac{x^{k}}{k}=H_{n}+\sum_{1 \leq k \leq n}\binom{n}{k} \frac{(x-1)^{k}}{k}
$$

In the case that $n=1$

$$
\sum_{1 \leq k \leq 1} \frac{x^{k}}{k}=x=1+\binom{1}{1}(x-1)=H_{1}+\sum_{1 \leq k \leq 1}\binom{1}{k} \frac{(x-1)^{k}}{k}
$$

Then, assuming

$$
\sum_{1 \leq k \leq n} \frac{x^{k}}{k}=H_{n}+\sum_{1 \leq k \leq n}\binom{n}{k} \frac{(x-1)^{k}}{k}
$$

we must show that

$$
\sum_{1 \leq k \leq n+1} \frac{x^{k}}{k}=H_{n+1}+\sum_{1 \leq k \leq n+1}\binom{n+1}{k} \frac{(x-1)^{k}}{k}
$$

But

$$
\begin{aligned}
& \sum_{1 \leq k \leq n+1} \frac{x^{k}}{k} \\
& =\sum_{1 \leq k \leq n} \frac{x^{k}}{k}+\frac{x^{n+1}}{n+1} \\
& =\sum_{1 \leq k \leq n} \frac{x^{k}}{k}+\frac{1}{n+1}+\frac{x^{n+1}}{n+1}-\frac{1}{n+1} \\
& =\sum_{1 \leq k \leq n} \frac{x^{k}}{k}+\frac{1}{n+1}+\frac{1}{n+1}\left((1+(x-1))^{n+1}-1\right) \\
& =\sum_{1 \leq k \leq n} \frac{x^{k}}{k}+\frac{1}{n+1}+\frac{1}{n+1}\left(\sum_{0 \leq k \leq n+1}\binom{n+1}{k}(x-1)^{k}-1\right) \\
& =\sum_{1 \leq k \leq n} \frac{x^{k}}{k}+\frac{1}{n+1}+\frac{1}{n+1}\left(\sum_{0 \leq k \leq n+1}\binom{n+1}{k}(x-1)^{k}-\binom{n+1}{0}(x-1)^{0}\right) \\
& =\sum_{1 \leq k \leq n} \frac{x^{k}}{k}+\frac{1}{n+1}+\frac{1}{n+1} \sum_{1 \leq k \leq n+1}\binom{n+1}{k}(x-1)^{k} \\
& =\sum_{1 \leq k \leq n} \frac{x^{k}}{k}+\frac{1}{n+1}+\frac{1}{n+1} \sum_{1 \leq k \leq n+1} \frac{n+1}{k}\binom{n}{k-1}(x-1)^{k} \\
& =\sum_{1 \leq k \leq n} \frac{x^{k}}{k}+\frac{1}{n+1}+\sum_{1 \leq k \leq n+1} \frac{n+1}{n+1} \frac{1}{k}\binom{n}{k-1}(x-1)^{k} \\
& =\sum_{1 \leq k \leq n} \frac{x^{k}}{k}+\frac{1}{n+1}+\sum_{1 \leq k \leq n+1}\binom{n}{k-1} \frac{(x-1)^{k}}{k} \\
& =\sum_{1 \leq k \leq n} \frac{x^{k}}{k}+\frac{1}{n+1}+\binom{n}{n+1} \frac{(x-1)^{n+1}}{n+1}+\sum_{1 \leq k \leq n+1}\binom{n}{k-1} \frac{(x-1)^{k}}{k} \\
& =H_{n}+\sum_{1 \leq k \leq n}\binom{n}{k} \frac{(x-1)^{k}}{k}+\frac{1}{n+1}+\binom{n}{n+1} \frac{(x-1)^{n+1}}{n+1}+\sum_{1 \leq k \leq n+1}\binom{n}{k-1} \frac{(x-1)^{k}}{k} \\
& =H_{n+1}+\sum_{1 \leq k \leq n+1}\binom{n}{k} \frac{(x-1)^{k}}{k}+\sum_{1 \leq k \leq n+1}\binom{n}{k-1} \frac{(x-1)^{k}}{k} \\
& =H_{n+1}+\sum_{1 \leq k \leq n+1}\left(\binom{n}{k}+\binom{n}{k-1}\right) \frac{(x-1)^{k}}{k} \\
& =H_{n+1}+\sum_{1 \leq k \leq n+1}\binom{n+1}{k} \frac{(x-1)^{k}}{k}
\end{aligned}
$$

from Eq. 1.2.6-(7)
as we needed to show.
14. [M22] Show that $\sum_{k=1}^{n} H_{k} / k=\frac{1}{2}\left(H_{n}^{2}+H_{n}^{(2)}\right)$, and evaluate $\sum_{k=1}^{n} H_{k} /(k+1)$.

We may prove the identity.

Proposition. $\sum_{1 \leq k \leq n} H_{k} / k=\frac{1}{2}\left(H_{n}^{2}+H_{n}^{(2)}\right)$.

Proof. Let n be an arbitrary nonnegative integer. We must show that

$$
\sum_{1 \leq k \leq n} H_{k} / k=\frac{1}{2}\left(H_{n}^{2}+H_{n}^{(2)}\right)
$$

But

$$
\begin{aligned}
& \sum_{1 \leq k \leq n} H_{k} / k \\
& \sum_{1 \leq k \leq n} \frac{1}{k} H_{k} \\
& \quad=\sum_{1 \leq k \leq n} \frac{1}{k} \sum_{1 \leq j \leq k} \frac{1}{j} \\
& =\sum_{1 \leq k \leq n} \sum_{1 \leq j \leq k} \frac{1}{k} \frac{1}{j} \\
& \quad=\frac{1}{2}\left(\left(\sum_{1 \leq k \leq n} \frac{1}{k}\right)^{2}+\left(\sum_{1 \leq k \leq n} \frac{1}{k^{2}}\right)\right) \\
& \quad=\frac{1}{2}\left(H_{n}^{2}+H_{n}^{(2)}\right)
\end{aligned}
$$

as we needed to show.

Thus, we may evaluate the sum as

$$
\begin{aligned}
& \sum_{1 \leq k \leq n} H_{k} /(k+1) \\
& =\sum_{1 \leq k \leq n} \frac{1}{k+1} H_{k} \\
& =\sum_{1 \leq k \leq n} \frac{1}{k+1} \sum_{1 \leq j \leq k} \frac{1}{j} \\
& =\sum_{1 \leq k \leq n} \sum_{1 \leq j \leq k} \frac{1}{k+1} \frac{1}{j} \\
& =\sum_{2 \leq k \leq n+1} \sum_{1 \leq j \leq k-1} \frac{1}{k} \frac{1}{j} \\
& =\sum_{2 \leq k \leq n+1} \frac{1}{k}\left(-\frac{1}{k}+\sum_{1 \leq j \leq k} \frac{1}{j}\right) \\
& =-\sum_{2 \leq k \leq n+1} \frac{1}{k} \frac{1}{k}+\sum_{2 \leq k \leq n+1} \frac{1}{k} \sum_{1 \leq j \leq k} \frac{1}{j} \\
& =-\sum_{2 \leq k \leq n+1} \frac{1}{k^{2}}+\sum_{2 \leq k \leq n+1} \frac{1}{k} \sum_{1 \leq j \leq k} \frac{1}{j} \\
& =-\left(-1+\sum_{1 \leq k \leq n+1} \frac{1}{k^{2}}\right)+\sum_{2 \leq k \leq n+1} \frac{1}{k} \sum_{1 \leq j \leq k} \frac{1}{j} \\
& =-\left(-1+H_{n+1}^{(2)}\right)+\sum_{2 \leq k \leq n+1} \frac{1}{k} \sum_{1 \leq j \leq k} \frac{1}{j} \\
& =1-H_{n+1}^{(2)}+\sum_{2 \leq k \leq n+1} \frac{1}{k} \sum_{1 \leq j \leq k} \frac{1}{j} \\
& =1-H_{n+1}^{(2)}+\sum_{1 \leq k \leq n+1} \frac{1}{k} \sum_{1 \leq j \leq k} \frac{1}{j}-\frac{1}{1} \sum_{1 \leq j \leq 1} \frac{1}{j} \\
& =1-H_{n+1}^{(2)}+\sum_{1 \leq k \leq n+1} \frac{1}{k} \sum_{1 \leq j \leq k} \frac{1}{j}-1 \\
& =1-H_{n+1}^{(2)}+\sum_{1 \leq k \leq n+1} \frac{1}{k} H_{k}-1 \\
& =-H_{n+1}^{(2)}+\frac{1}{2}\left(H_{n+1}^{2}+H_{n+1}^{(2)}\right) \\
& =-H_{n+1}^{(2)}+\frac{1}{2} H_{n+1}^{2}+\frac{1}{2} H_{n+1}^{(2)} \\
& =-H_{n+1}^{(2)}+\frac{1}{2} H_{n+1}^{2}+\frac{1}{2} H_{n+1}^{(2)} \\
& =\frac{1}{2} H_{n+1}^{2}-\frac{1}{2} H_{n+1}^{(2)} \\
& =\frac{1}{2}\left(H_{n+1}^{2}-H_{n+1}^{(2)}\right) \text {. }
\end{aligned}
$$

- 15. [M23] Express $\sum_{k=1}^{n} H_{k}^{2}$ in terms of n and H_{n}.

The sum is

$$
\begin{aligned}
& \sum_{1 \leq k \leq n} H_{k}^{2} \\
& =\sum_{1 \leq k \leq n} H_{k} H_{k} \\
& =\sum_{1 \leq k \leq n} H_{k} \sum_{1 \leq j \leq k} \frac{1}{j} \\
& =\sum_{1 \leq k \leq n} \sum_{1 \leq j \leq k} H_{k} \frac{1}{j} \\
& =\sum_{1 \leq j \leq n} \sum_{j \leq k \leq n} H_{k} \frac{1}{j} \\
& =\sum_{1 \leq j \leq n} \frac{1}{j} \sum_{j \leq k \leq n} H_{k} \\
& =\sum_{1 \leq j \leq n} \frac{1}{j}\left(\sum_{1 \leq k \leq n} H_{k}-\sum_{1 \leq k \leq j-1} H_{k}\right) \\
& =\sum_{1 \leq j \leq n} \frac{1}{j}\left(\left((n+1) H_{n}-n\right)-\left((j-1+1) H_{j-1}-(j-1)\right)\right) \\
& =\sum_{1 \leq j \leq n} \frac{1}{j}\left((n+1) H_{n}-n-j H_{j-1}+j-1\right) \\
& =\left((n+1) H_{n}-n-1\right) \sum_{1 \leq j \leq n} \frac{1}{j}-\sum_{1 \leq j \leq n} \frac{1}{j} j H_{j-1}+\sum_{1 \leq j \leq n} \frac{1}{j} j \\
& =\left((n+1) H_{n}-n-1\right) H_{n}-\sum_{1 \leq j \leq n} H_{j-1}+\sum_{1 \leq j \leq n} 1 \\
& =(n+1) H_{n}^{2}-n H_{n}-H_{n}-\left(\sum_{1 \leq j \leq n} H_{j}-H_{n}\right)+n \\
& =(n+1) H_{n}^{2}-n H_{n}-H_{n}-\left((n+1) H_{n}-n-H_{n}\right)+n \\
& =(n+1) H_{n}^{2}-n H_{n}-H_{n}-(n+1) H_{n}+n+H_{n}+n \\
& =(n+1) H_{n}^{2}-n H_{n}-(n+1) H_{n}+2 n \\
& = \\
& =(n+1) H_{n}^{2}-(2 n+1) H_{n}+2 n .
\end{aligned}
$$

16. [18] Express the sum $1+\frac{1}{3}+\cdots+\frac{1}{2 n-1}$ in terms of harmonic numbers.

The sum of all n unit fractions with odd denominators through $2 n-1$ may be expressed as

$$
\begin{aligned}
\sum_{1 \leq k \leq n} \frac{1}{2 k-1} & =\sum_{\substack{1 \leq k \leq 2 n-1 \\
\mathrm{k} \text { odd }}} \frac{1}{k} \\
& =\sum_{1 \leq k \leq 2 n-1} \frac{1}{k}-\sum_{\substack{1 \leq k \leq 2 n-1 \\
\mathrm{k} \text { even }}} \frac{1}{k} \\
& =\sum_{1 \leq k \leq 2 n-1} \frac{1}{k}-\sum_{1 \leq k \leq n-1} \frac{1}{2 k} \\
& =H_{2 n-1}-\frac{1}{2} \sum_{1 \leq k \leq n-1} \frac{1}{k} \\
& =H_{2 n-1}-\frac{1}{2} H_{n-1}
\end{aligned}
$$

17. [M24] (E. Waring, 1782.) Let p be an odd prime. Show that the numerator of H_{p-1} is divisible by p.

Proposition. If p is an odd prime, the numerator of H_{p-1} is divisible by p.
Proof. Let p be an arbitrary odd prime. We must show that the numerator of H_{p-1} is divisible by p. That is, that

$$
(p-1)!H_{p-1}=\sum_{1 \leq k \leq p-1} \frac{(p-1)!}{k} \equiv 0 \quad(\bmod p)
$$

From exercise 1.2.4-19, the law of inverses, we may find a k^{\prime} such that

$$
k k^{\prime} \equiv 1 \quad(\bmod p)
$$

since $k \perp p$. Note that $1 \leq k^{\prime} \leq p-1$ and that each k^{\prime} is unique such that $\{k \mid 1 \leq k \leq$ $p-1\}=\left\{k^{\prime} \mid k k^{\prime} \equiv 1(\bmod p)\right\}$. Also note that since p is an odd prime by hypothesis, $-\frac{(p-1)}{2}$ is an integer. Then, from Wilson's theorem

$$
(p-1)!\equiv-1 \quad(\bmod p)
$$

we have that

$$
\begin{aligned}
\sum_{1 \leq k \leq p-1} \frac{(p-1)!}{k} & \equiv-\sum_{1 \leq k \leq p-1} \frac{1}{k} \\
& \equiv-\sum_{1 \leq k \leq p-1} \frac{k k^{\prime}}{k} \\
& \equiv-\sum_{1 \leq k \leq p-1} k^{\prime} \\
& \equiv-\sum_{1 \leq k \leq p-1} k \\
& \equiv-\frac{p(p-1)}{2} \\
& \equiv 0 \quad(\bmod p)
\end{aligned}
$$

as we needed to show.
[Hardy and Wright, An Introduction to the Theory of Numbers, Section 7.8]
18. [M33] (J. Selfridge.) What is the highest power of 2 that divides the numerator of $1+\frac{1}{3}+\cdots+$ $\frac{1}{2 n-1}$?

We want to find the highest power of 2 that divides the numerator of

$$
\sum_{1 \leq k \leq n} \frac{1}{2 k-1}
$$

assuming n positive.
Let m be the integer such that $n=2^{r} m$ for some integer r. We know that m exists and is odd, as it is the product of the odd primes from the prime factorization of n.
We then have

$$
\begin{aligned}
\sum_{1 \leq k \leq n} \frac{1}{2 k-1} & =\sum_{1 \leq k \leq 2^{r} m} \frac{1}{2 k-1} \\
& =\sum_{0 \leq j \leq m-1} \sum_{1 \leq k \leq 2^{r}} \frac{1}{j 2^{r+1}+2 k-1}
\end{aligned}
$$

which we may prove by induction on m.
If $m=1$,

$$
\sum_{1 \leq k \leq 2^{r}} \frac{1}{2 k-1}=\sum_{1 \leq k \leq 2^{r}} \frac{1}{(0) 2^{r+1}+2 k-1}=\sum_{0 \leq j \leq 0} \sum_{1 \leq k \leq 2^{r}} \frac{1}{j 2^{r+1}+2 k-1}
$$

Then, assuming

$$
\sum_{1 \leq k \leq 2^{r} m} \frac{1}{2 k-1}=\sum_{0 \leq j \leq m-1} \sum_{1 \leq k \leq 2^{r}} \frac{1}{j 2^{r+1}+2 k-1}
$$

we must show that

$$
\sum_{1 \leq k \leq 2^{r}(m+1)} \frac{1}{2 k-1}=\sum_{0 \leq j \leq m} \sum_{1 \leq k \leq 2^{r}} \frac{1}{j 2^{r+1}+2 k-1} .
$$

But

$$
\begin{aligned}
\sum_{1 \leq k \leq 2^{r}(m+1)} \frac{1}{2 k-1} & =\sum_{1 \leq k \leq 2^{r} m} \frac{1}{2 k-1}+\sum_{2^{r} m+1 \leq k \leq 2^{r}(m+1)} \frac{1}{2 k-1} \\
& =\sum_{0 \leq j \leq m-1} \sum_{1 \leq k \leq 2^{r}} \frac{1}{j 2^{r+1}+2 k-1}+\sum_{2^{r} m+1 \leq k \leq 2^{r}(m+1)} \frac{1}{2 k-1} \\
& =\sum_{0 \leq j \leq m-1} \sum_{1 \leq k \leq 2^{r}} \frac{1}{j 2^{r+1}+2 k-1}+\sum_{1 \leq k-2^{r} m \leq 2^{r}} \frac{1}{2 k-1} \\
& =\sum_{0 \leq j \leq m-1} \sum_{1 \leq k \leq 2^{r}} \frac{1}{j 2^{r+1}+2 k-1}+\sum_{1 \leq k \leq 2^{r}} \frac{1}{2\left(k+2^{r} m\right)-1} \\
& =\sum_{0 \leq j \leq m-1} \sum_{1 \leq k \leq 2^{r}} \frac{1}{j 2^{r+1}+2 k-1}+\sum_{1 \leq k \leq 2^{r}} \frac{1}{m 2^{r+1} m+2 k-1} \\
& =\sum_{1 \leq k \leq 2^{r} m} \frac{1}{2 k-1}
\end{aligned}
$$

and hence the identity.
Let

$$
P_{j}=\prod_{1 \leq k \leq 2^{r}} j 2^{r+1}+2 k-1
$$

be the common denominator such that

$$
\sum_{1 \leq k \leq 2^{r}} \frac{1}{j 2^{r+1}+2 k-1}=\sum_{1 \leq k \leq 2^{r}} \frac{P_{j}}{P_{j}\left(j 2^{r+1}+2 k-1\right)}=\sum_{1 \leq k \leq 2^{r}} \frac{P_{j} /\left(j 2^{r+1}+2 k-1\right)}{P_{j}}
$$

That is, such that the numerator of $\sum_{1 \leq k \leq n} \frac{1}{2 k-1}$ is

$$
\sum_{0 \leq j \leq m-1} \sum_{1 \leq k \leq 2^{r}} \frac{P_{j}}{j 2^{r+1}+2 k-1}
$$

m sets of 2^{r} terms, each of the form P_{j} over a distinct odd residue of 2^{r+1}. Each ratio itself is an integer and a distinct odd residue of 2^{r+1}, and the sum of 2^{r} distinct odd residues is $2^{r^{2}} m_{j}=2^{2 r} m_{j}$ for some integer m_{j} by the odd number theorem, m_{j} odd. That is, the numerator of $\sum_{1 \leq k \leq n} \frac{1}{2 k-1}$ is

$$
\sum_{0 \leq j \leq m-1} 2^{2 r} m_{j}=2^{2 r} \sum_{0 \leq j \leq m-1} m_{j}
$$

Since m is odd, we know the sum of m odd terms m_{j} is itself an odd number. Let this be M, so that the numerator of $\sum_{1 \leq k \leq n} \frac{1}{2 k-1}$ is

$$
2^{2 r} M
$$

for some odd integer M. That is, $2^{2 r}$ is the highest power of 2 that divides the numerator of

$$
\sum_{1 \leq k \leq n} \frac{1}{2 k-1}
$$

where m is the odd integer such that $n=2^{r} m$ for some integer r.
[AMM 67 (1960), 924-925]
19. [M30] List all nonnegative integers n for which H_{n} is an integer. [Hint: If H_{n} has odd numerator and even denominator, it cannot be an integer.]

The nonnegative integers n for which H_{n} is an integer are $n=0$ and $n=1$, since $H_{0}=0$ and $H_{1}=1$. To see why these are the only n, consider the following. Let $k=\lfloor\lg n\rfloor$ with $n \geq 2$, so that $2^{k} \leq n<2^{k+1}$ and $k \geq 1$, and let

$$
P=\prod_{1 \leq i \leq n} 2^{k} m
$$

be the common denominator for each term of H_{n}, m odd but P even. We know that m exists and is odd, as it is the product of the odd primes from a prime factorization of the common denominator. Then

$$
\begin{aligned}
H_{n} & =\sum_{1 \leq j \leq n} \frac{1}{j} \\
& =\sum_{1 \leq j \leq n} \frac{P}{P j} \\
& =\sum_{1 \leq j \leq n} \frac{P / j}{P} \\
& =\sum_{1 \leq j \leq n} P / j / P
\end{aligned}
$$

If H_{n} is an integer, then so is $H_{n}-1$. But

$$
H_{n}-1=\sum_{2 \leq j \leq n} P / j / P=\frac{M}{P}
$$

for $M=\sum_{2 \leq j \leq n} P / j$. Each term in M is even except for the term with $j=2^{k}, P / 2^{k}=m$, which means \bar{M} is odd. But the divisor P is even. This means their ratio cannot possibly be an integer, and hence the claim.
20. [HM22] There is an analytic way to approach summation problems such as the one leading to Theorem A in this section: If $f(x)=\sum_{k \geq 0} a_{k} x^{k}$, and this series converges for $x=x_{0}$, prove that

$$
\sum_{k \geq 0} a_{k} x_{0}^{k} H_{k}=\int_{0}^{1} \frac{f\left(x_{0}\right)-f\left(x_{0} y\right)}{1-y} d y
$$

Proposition. If $f(x)=\sum_{k \geq 0} a_{k} x^{k}$ and $f(x)$ converges for $x=x_{0}$ then $\sum_{k \geq 0} a_{k} x_{0}^{k} H_{k}=$ $\int_{0}^{1} \frac{f\left(x_{0}\right)-f\left(x_{0} y\right)}{1-y} d y$.
Proof. Let $f(x)=\sum_{k \geq 0} a_{k} x^{k}$ be a series with arbitrary coefficients a_{k} such that $f(x)$ converges for $x=x_{0}$. \bar{W} e must show that

$$
\sum_{k \geq 0} a_{k} x_{0}^{k} H_{k}=\int_{0}^{1} \frac{f\left(x_{0}\right)-f\left(x_{0} y\right)}{1-y} d y
$$

But

$$
\begin{aligned}
\sum_{k \geq 0} a_{k} x_{0}^{k} H_{k} & =\sum_{k \geq 0} a_{k} x_{0}^{k} \sum_{1 \leq j \leq k} \frac{1}{j} \\
& =\sum_{k \geq 0} a_{k} x_{0}^{k} \sum_{1 \leq j \leq k} \int_{0}^{1} y^{j-1} d y \\
& =\sum_{k \geq 0} a_{k} x_{0}^{k} \int_{0}^{1} \sum_{1 \leq j \leq k} y^{j-1} d y \\
& =\sum_{k \geq 0} a_{k} x_{0}^{k} \int_{0}^{1} \sum_{0 \leq j \leq k-1} y^{j} d y \\
& =\sum_{k \geq 0} a_{k} x_{0}^{k} \int_{0}^{1} \frac{y^{0}-y^{k-1+1}}{1-y} d y \\
& =\sum_{k \geq 0} a_{k} x_{0}^{k} \int_{0}^{1} \frac{1-y^{k}}{1-y} d y \\
& =\int_{0}^{1} \frac{1}{1-y} \sum_{k \geq 0}\left(a_{k} x_{0}^{k}-a_{k} x_{0}^{k} y^{k}\right) d y \\
& =\int_{0}^{1} \frac{1}{1-y}\left(\sum_{k \geq 0} a_{k} x_{0}^{k}-\sum_{k \geq 0} a_{k}\left(x_{0} y\right)^{k}\right) d y \\
& =\int_{0}^{1} \frac{1}{1-y}\left(f\left(x_{0}\right)-f\left(x_{0} y\right)\right) d y \\
& =\int_{0}^{1} \frac{f\left(x_{0}\right)-f\left(x_{0} y\right)}{1-y} d y
\end{aligned}
$$

as we needed to show.
[AMM 69 (1962), 239; H. W. Gould, Mathematics Magazine 34 (1961), 317-321]
21. [M24] Evaluate $\sum_{k=1}^{n} H_{k} /(n+1-k)$.

The difference between the sum for n and $n+1$ is given as

$$
\begin{aligned}
& \sum_{1 \leq k \leq n+1} \frac{H_{k}}{n+2-k}-\sum_{1 \leq k \leq n} \frac{H_{k}}{n+1-k} \\
& =\frac{H_{n+1}}{n+2-(n+1)}+\sum_{1 \leq k \leq n} \frac{H_{k}}{n+2-k}-\sum_{1 \leq k \leq n} \frac{H_{k}}{n+1-k} \\
& =H_{n+1}+\sum_{1 \leq k \leq n} \frac{H_{k}}{n+2-k}-\sum_{1 \leq k \leq n} \frac{H_{k}}{n+1-k} \\
& =H_{n+1}+\sum_{1 \leq k \leq n}\left(\frac{H_{k}}{n+2-k}-\frac{H_{k}}{n+1-k}\right) \\
& =H_{n+1}+\sum_{1 \leq k \leq n} \frac{H_{k}}{n+2-k}-\sum_{1 \leq k \leq n} \frac{H_{k}}{n+1-k} \\
& =H_{n+1}+\sum_{0 \leq k \leq n-1} \frac{H_{k+1}}{n+1-k}-\sum_{1 \leq k \leq n} \frac{H_{k}}{n+1-k} \\
& =H_{n+1}+\frac{H_{1}}{n+1}-H_{n+1}+\sum_{1 \leq k \leq n} \frac{H_{k+1}}{n+1-k}-\sum_{1 \leq k \leq n} \frac{H_{k}}{n+1-k} \\
& =\frac{1}{n+1}+\sum_{1 \leq k \leq n} \frac{H_{k+1}}{n+1-k}-\sum_{1 \leq k \leq n} \frac{H_{k}}{n+1-k} \\
& =\frac{1}{n+1}+\sum_{1 \leq k \leq n} \frac{H_{k}+\frac{1}{k+1}}{n+1-k}-\sum_{1 \leq k \leq n} \frac{H_{k}}{n+1-k} \\
& =\frac{1}{n+1}+\sum_{1 \leq k \leq n} \frac{H_{k}}{n+1-k}+\sum_{1 \leq k \leq n} \frac{1}{(k+1)(n+1-k)}-\sum_{1 \leq k \leq n} \frac{H_{k}}{n+1-k} \\
& =\frac{1}{n+1}+\sum_{1 \leq k \leq n} \frac{1}{(k+1)(n+1-k)} \\
& =\frac{1}{n+1}+\sum_{1 \leq k \leq n}\left(\frac{1}{(n+2)(k+1)}+\frac{1}{(n+2)(n+1-k)}\right) \\
& =\frac{1}{n+1}+\frac{1}{n+2} \sum_{1 \leq k \leq n}\left(\frac{1}{k+1}+\frac{1}{n+1-k}\right) \\
& =\frac{1}{n+1}+\frac{1}{n+2} \sum_{1 \leq k \leq n} \frac{1}{k+1}+\frac{1}{n+2} \sum_{1 \leq k \leq n} \frac{1}{n+1-k} \\
& =\frac{1}{n+1}+\frac{1}{n+2} \sum_{2 \leq k \leq n+1} \frac{1}{k}+\frac{1}{n+2} \sum_{1 \leq k \leq n} \frac{1}{k} \\
& =\frac{1}{n+1}+\frac{1}{n+2}\left(-\frac{1}{1}+\frac{1}{n+1}+\sum_{1 \leq k \leq n} \frac{1}{k}\right)+\frac{H_{n}}{n+2} \\
& =\frac{1}{n+1}+\frac{1}{n+2}\left(-\frac{1}{1}+\frac{1}{n+1}+H_{n}\right)+\frac{H_{n}}{n+2} \\
& =\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}+\frac{H_{n}-1}{n+2}+\frac{H_{n}}{n+2} \\
& =\frac{1}{n+1}+\frac{H_{n}}{n+2}-\frac{1}{n+2}+\frac{H_{n+1}}{n+2} \\
& =\frac{1}{(n+1)(n+2)}+\frac{H_{n}}{n+2}+\frac{H_{n+1}}{n+2} \\
& =\frac{H_{n+1}}{n+2}+\frac{H_{n+1}}{n+2} \\
& =2 \frac{H_{n+1}}{n+2} \text {. }
\end{aligned}
$$

Then, in the case that $n=1$

$$
\sum_{1 \leq k \leq 1} \frac{H_{k}}{1+1-k}=\frac{H_{k}}{1+1-k}=H_{1}=1=\frac{9}{4}-\frac{5}{4}=\left(1+\frac{1}{2}\right)^{2}-\left(1+\frac{1}{2^{2}}\right)=H_{2}^{2}-H_{2}^{(2)}
$$

and assuming

$$
\sum_{1 \leq k \leq n} \frac{H_{k}}{n+1-k}=H_{n+1}^{2}-H_{n+1}^{(2)}
$$

it may be shown that

$$
\sum_{1 \leq k \leq n+1} \frac{H_{k}}{n+2-k}=H_{n+2}^{2}-H_{n+2}^{(2)}
$$

as

$$
\begin{aligned}
& \sum_{1 \leq k \leq n+1} \frac{H_{k}}{n+2-k} \\
& \quad=\sum_{1 \leq k \leq n} \frac{H_{k}}{n+1-k}+2 \frac{H_{n+1}}{n+2} \\
& \quad=H_{n+1}^{2}-H_{n+1}^{(2)}+2 \frac{H_{n+1}}{n+2} \\
& \quad=H_{n+1}^{2}+2 \frac{H_{n+1}}{n+2}+\frac{1}{(n+2)^{2}}-H_{n+1}^{(2)}-\frac{1}{(n+2)^{2}} \\
& \quad=\left(H_{n+1}+\frac{1}{n+2}\right)^{2}-\left(H_{n+1}^{(2)}+\frac{1}{(n+2)^{2}}\right) \\
& \quad=H_{n+2}^{2}-H_{n+2}^{(2)}
\end{aligned}
$$

That is

$$
\sum_{1 \leq k \leq n} \frac{H_{k}}{n+1-k}=H_{n+1}^{2}-H_{n+1}^{(2)}
$$

22. [M28] Evaluate $\sum_{k=0}^{n} H_{k} H_{n-k}$.

From summation by parts and exercise 21,

$$
\begin{aligned}
& \sum_{0 \leq k \leq n} H_{k} H_{n-k} \\
& =\sum_{1 \leq k \leq n} H_{k} H_{n-k} \\
& =\left(\sum_{1 \leq j \leq n} H_{j}\right) H_{n-n}-\sum_{1 \leq k \leq n}\left(\sum_{1 \leq j \leq k} H_{j}\right)\left(H_{n-(k+1)}-H_{n-k}\right) \\
& =\left((n+1) H_{n}-n\right) H_{0}+\sum_{1 \leq k \leq n-1}\left((k+1) H_{k}-k\right) \frac{1}{n-k} \\
& =\sum_{1 \leq k \leq n-1} \frac{(k+1) H_{k}-k}{n-k} \\
& =\sum_{1 \leq k \leq n-1} \frac{(n-k+1) H_{n-k}-n+k}{k} \\
& =\sum_{1 \leq k \leq n-1} \frac{n H_{n-k}-k H_{n-k}+H_{n-k}-n+k}{k} \\
& =\sum_{1 \leq k \leq n-1} \frac{n H_{n-k}}{k}-\sum_{1 \leq k \leq n-1} \frac{k H_{n-k}}{k}+\sum_{1 \leq k \leq n-1} \frac{H_{n-k}}{k}-\sum_{1 \leq k \leq n-1} \frac{n}{k}+\sum_{1 \leq k \leq n-1} \frac{k}{k} \\
& =n \sum_{1 \leq k \leq n-1} \frac{H_{n-k}}{k}-\sum_{1 \leq k \leq n-1} H_{n-k}+\sum_{1 \leq k \leq n-1} \frac{H_{n-k}}{k}-n \sum_{1 \leq k \leq n-1} \frac{1}{k}+\sum_{1 \leq k \leq n-1} 1 \\
& =n \sum_{1 \leq k \leq n-1} \frac{H_{n-k}}{k}-\sum_{1 \leq k \leq n-1} H_{n-k}+\sum_{1 \leq k \leq n-1} \frac{H_{n-k}}{k}-n H_{n-1}+n-1 \\
& =n \sum_{1 \leq k \leq n-1} \frac{H_{k}}{n-k}-\sum_{1 \leq k \leq n-1} H_{k}+\sum_{1 \leq k \leq n-1} \frac{H_{k}}{n-k}-n\left(H_{n}-1\right) \\
& =(n+1) \sum_{1 \leq k \leq n-1} \frac{H_{k}}{n-k}-\left(((n-1)+1) H_{n-1}-(n-1)\right)-n\left(H_{n}-1\right) \\
& =(n+1) \sum_{1 \leq k \leq n-1} \frac{H_{k}}{n-k}-n H_{n-1}+n-1-n\left(H_{n}-1\right) \\
& =(n+1) \sum_{1 \leq k \leq n-1} \frac{H_{k}}{n-k}-n\left(H_{n}-1\right)-n\left(H_{n}-1\right) \\
& =(n+1) \sum_{1 \leq k \leq n-1} \frac{H_{k}}{n-k}-2 n\left(H_{n}-1\right) \\
& =(n+1)\left(H_{n}^{2}-H_{n}^{(2)}\right)-2 n\left(H_{n}-1\right) \text {. }
\end{aligned}
$$

23. [HM20] By considering the function $\Gamma^{\prime}(x) / \Gamma(x)$, show how we can get a natural generalization of H_{n} to noninteger values of n. You may use the fact that $\Gamma^{\prime}(1)=-\gamma$, anticipating the next exercise.

We can get a natural generalization of H_{n} to noninteger values of n by considering the function $\Gamma^{\prime}(x) / \Gamma(x)$, using the fact that $\Gamma^{\prime}(1)=-\gamma$.

By definition,

$$
\Gamma(x+1)=x \Gamma(x)
$$

and so

$$
\begin{aligned}
\Gamma^{\prime}(x+1) & =(x \Gamma(x))^{\prime} \\
& =x^{\prime} \Gamma(x)+x \Gamma^{\prime}(x) \\
& =\Gamma(x)+x \Gamma^{\prime}(x)
\end{aligned}
$$

if and only if

$$
\begin{aligned}
\frac{\Gamma^{\prime}(x+1)}{\Gamma(x+1)} & =\frac{\Gamma(x)+x \Gamma^{\prime}(x)}{\Gamma(x+1)} \\
& =\frac{\Gamma(x)+x \Gamma^{\prime}(x)}{x \Gamma(x)} \\
& =\frac{\Gamma(x)}{x \Gamma(x)}+\frac{x \Gamma^{\prime}(x)}{x \Gamma(x)} \\
& =\frac{1}{x}+\frac{\Gamma^{\prime}(x)}{\Gamma(x)}
\end{aligned}
$$

giving us a natural generalization of H_{n} to noninteger values of n as

$$
H_{x}=\frac{\Gamma^{\prime}(x+1)}{\Gamma(x+1)}+\gamma
$$

Note that in the case that $x=0$

$$
H_{0}=\frac{\Gamma^{\prime}(1)}{\Gamma(1)}+\gamma=\frac{-\gamma}{1}+\gamma=0
$$

and assuming

$$
H_{x}=\frac{\Gamma^{\prime}(x+1)}{\Gamma(x+1)}+\gamma
$$

we have that

$$
\begin{aligned}
H_{x+1} & =H_{x}+\frac{1}{x+1} \\
& =\frac{\Gamma^{\prime}(x+1)}{\Gamma(x+1)}+\gamma+\frac{1}{x+1} \\
& =\frac{\Gamma^{\prime}(x+1)}{\Gamma(x+1)}+\frac{1}{x+1} \gamma \\
& =\frac{\Gamma^{\prime}(x+2)}{\Gamma(x+2)}+\gamma
\end{aligned}
$$

proving the identity holds for all nonnegative integers x.
24. [HM21] Show that

$$
x e^{\gamma x} \prod_{k \geq 1}\left(\left(1+\frac{x}{k}\right) e^{-x / k}\right)=\frac{1}{\Gamma(x)}
$$

(Consider the partial products of this infinite product.)

Proposition. $x e^{\gamma x} \prod_{k \geq 1}\left(\left(1+\frac{x}{k}\right) e^{-x / k}\right)=\frac{1}{\Gamma(x)}$.

Proof. Let x be an arbitrary real. We must show that

$$
x e^{\gamma x} \prod_{k \geq 1}\left(\left(1+\frac{x}{k}\right) e^{-x / k}\right)=\frac{1}{\Gamma(x)}
$$

But since

$$
\gamma=\lim _{n \rightarrow \infty}\left(H_{n}-\ln n\right)
$$

we have that

$$
\begin{aligned}
& x e^{\gamma x} \prod_{k \geq 1}\left(\left(1+\frac{x}{k}\right) e^{-x / k}\right) \\
& =x e^{\gamma x} \lim _{n \rightarrow \infty} \prod_{1 \leq k \leq n}\left(\left(1+\frac{x}{k}\right) e^{-x / k}\right) \\
& =\lim _{n \rightarrow \infty} x e^{\gamma x} \prod_{1 \leq k \leq n}\left(\left(1+\frac{x}{k}\right) e^{-x / k}\right) \\
& =\lim _{n \rightarrow \infty} x e^{\left(H_{n}-\ln n\right) x} \prod_{1 \leq k \leq n}\left(\left(1+\frac{x}{k}\right) e^{-x / k}\right) \\
& =\lim _{n \rightarrow \infty} x \frac{e^{x H_{n}}}{e^{x \ln n}} \prod_{1 \leq k \leq n}\left(\left(1+\frac{x}{k}\right) e^{-x / k}\right) \\
& =\lim _{n \rightarrow \infty} x \frac{e^{x H_{n}}}{n^{x}} \prod_{1 \leq k \leq n}\left(\left(1+\frac{x}{k}\right) e^{-x / k}\right) \\
& =\lim _{n \rightarrow \infty} \frac{x}{n^{x}} e^{x H_{n}} \prod_{1 \leq k \leq n}\left(\left(1+\frac{x}{k}\right) e^{-x / k}\right) \\
& =\lim _{n \rightarrow \infty} \frac{x}{n^{x}} e^{x H_{n}}\left(\prod_{1 \leq k \leq n}\left(1+\frac{x}{k}\right)\right)\left(\prod_{1 \leq k \leq n} e^{-x / k}\right) \\
& =\lim _{n \rightarrow \infty} \frac{x}{n^{x}} e^{x H_{n}}\left(\prod_{1 \leq k \leq n}\left(1+\frac{x}{k}\right)\right) e^{-x \sum_{1 \leq k \leq n} 1 / k} \\
& =\lim _{n \rightarrow \infty} \frac{x}{n^{x}} e^{x H_{n}}\left(\prod_{1 \leq k \leq n}\left(1+\frac{x}{k}\right)\right) e^{-x H_{n}} \\
& =\lim _{n \rightarrow \infty} \frac{x}{n^{x}} \prod_{1 \leq k \leq n}\left(1+\frac{x}{k}\right) \\
& =\lim _{n \rightarrow \infty} \frac{x}{n^{x}} \prod_{1 \leq k \leq n} \frac{x+k}{k} \\
& =\lim _{n \rightarrow \infty} \frac{x}{n^{x}} \frac{\prod_{1 \leq k \leq n}(x+k)}{\prod_{1 \leq k \leq n} k} \\
& =\lim _{n \rightarrow \infty} \frac{x}{n^{x}} \frac{\prod_{1 \leq k \leq n}(x+k)}{n!} \\
& =\lim _{n \rightarrow \infty} \frac{x \prod_{1 \leq k \leq n}(x+k)}{n^{x} n!} \\
& =\frac{1}{\Gamma(x)}
\end{aligned}
$$

as we needed to show.

