Exercises from Section 1.2.8

Tord M. Johnson

February 22, 2016

1. [10] What is the answer to Leonardo Fibonacci's original problem: How many pairs of rabbits are present after a year?

The original problem assumes we start with a single pair of rabbits and a monthly period. Let k represent the number of months that have passed and our sequence by S_{k}, so that that initially we start with

$$
S_{0}=1=F_{2}=F_{0+2} \text { pair. }
$$

After a year, we have

$$
S_{12}=F_{12+2}=F_{14}=377 \text { pairs }
$$

and in general, after k months, we have

$$
S_{k}=F_{k+2} \text { pairs. }
$$

2. [20] In view of Eq. (15), what is the approximate value of F_{1000} ? (Use logarithms found in Appendix A.)

Given Eq. (15)

$$
F_{n}=\phi^{n} / \sqrt{5} \text { rounded to the nearest integer, }
$$

we may use the logarithms found in Appendix A to find that

$$
\begin{aligned}
F_{1000} & \approx e^{\ln \left(\phi^{1000} / \sqrt{5}\right)} \\
& =e^{1000 \ln \phi-\frac{1}{2} \ln 5} \\
& =e^{1000 \ln \phi-\frac{1}{2} \ln 5} \\
& =e^{1000 \ln \phi-\frac{1}{2}(\ln 10-\ln 2)} \\
& \approx e^{408.40711} \\
& \approx 10^{408.40711 / \ln 10} \\
& \approx 10^{208.63816} \\
& \approx 4.34666 \times 10^{208} .
\end{aligned}
$$

That is, F_{1000} is a 209-digit number whose leading digit is 4 .
3. [25] Write a computer program that calculates and prints F_{1} through F_{1000} in decimal notation. (The previous exercise determines the size of numbers that must be handled.)

The following Java code calculates and prints F_{1} through F_{1000}, by assuming nonnegative integers no larger than 209 digits.

```
class FibonacciNumber {
    public FibonacciNumber(int initialValue) {
        decimalDigits = new int[209];
        for (decimalDigitCount = 0; initialValue != 0; ++decimalDigitCount) {
            decimalDigits[decimalDigitCount] = initialValue % 10;
            initialValue /= 10;
        }
    }
```

```
    public FibonacciNumber plus(FibonacciNumber fibonacciNumber) {
        FibonacciNumber sum = new FibonacciNumber (0);
        int carry = 0;
        for (
            int k = 0;
            k < Math.max(decimalDigitCount, fibonacciNumber.decimalDigitCount);
            ++k
        ) {
            int thisDigit = (k < decimalDigitCount) ?
            decimalDigits[k] : 0;
                int thatDigit = (k < fibonacciNumber.decimalDigitCount) ?
            fibonacciNumber.decimalDigits[k] : 0;
        int digitSum = thisDigit + thatDigit + carry;
        sum.decimalDigits[sum.decimalDigitCount++] = digitSum % 10;
        carry = digitSum / 10;
    }
    if (carry > 0) {
        sum.decimalDigits[sum.decimalDigitCount++] = carry;
    }
    return (sum);
    }
    public String toString() {
        StringBuilder stringBuilder = new StringBuilder();
        for (int k = decimalDigitCount - 1; k >= 0; --k) {
            stringBuilder.append(decimalDigits[k]);
        }
        if (stringBuilder.length() == 0) {
        stringBuilder.append(0);
        }
        return (stringBuilder.toString());
    }
    private int[] decimalDigits;
    private int decimalDigitCount;
}
FibonacciNumber[] fibonacci = new FibonacciNumber [1000];
int k = 0;
System.out.println(fibonacci[k] = new FibonacciNumber(1));
++k;
System.out.println(fibonacci[k] = fibonacci[k - 1]);
for (++k; k < fibonacci.length; ++k) {
    System.out.println(fibonacci[k] = fibonacci[k - 1].plus(fibonacci[k - 2]));
}
```

The first thirty numbers generated are listed below,

n	F_{n}
1	1
2	1
3	2
4	3
5	5
6	8
7	13
8	21
9	34
10	55
11	89
12	144
13	233
14	377
15	610
16	987
17	1597
18	2584
19	4181
20	6765
21	10946
22	17711
23	28657
24	46368
25	75025
26	121393
27	196418
28	317811
29	514229
30	832040

and F_{1000} is printed as anticipated, a 209-digit number whose leading digit is 4 :

43466	55768	69374	56435	68852	76750	40625	80256	46605	17371
78040	24817	29089	53655	54179	49051	89040	38798	40079	25516
92959	22593	08032	26347	75209	68962	32398	73322	47116	16429
96440	90653	31879	38298	96964	99285	16003	70447	61377	95166
84922	8875.								

- 4. [14] Find all n for which $F_{n}=n$.

Manually inspecting F_{n} until $F_{n-1}>n$

n	F_{n}
0	0
1	1
2	1
3	2
4	3
5	5
6	8
7	13

reveals $F_{n}=n$ for $n=0,1$, and 5 . For $n>5, F_{n}$ increases faster than n, letting us conclude that these are the only n, as may be seen by the inductive argument that follows.

In the case that $n=6$, clearly $F_{n}=F_{6}=8>6=n$. Similarly, in the case that $n=7$, $F_{n}=F_{7}=13>7=n$. Then, assuming $F_{n}>n$ for $n>5$, we must show that $F_{n+1}>n+1$. But

$$
\begin{aligned}
F_{n+1} & =F_{n}+F_{n-1} \\
& >n+n-1 \\
& >n+1
\end{aligned}
$$

since $n>5$ by hypothesis, and hence the conclusion.
5. [20] Find all n for which $F_{n}=n^{2}$.

Manually inspecting F_{n} until $F_{n-1}>n^{2}$

n	n^{2}	F_{n}
0	0	0
1	1	1
2	4	1
3	9	2
4	16	3
5	25	5
6	36	8
7	49	13
8	64	21
9	81	34
10	100	55
11	121	89
12	144	144
13	169	233
14	196	377

reveals $F_{n}=n^{2}$ for $n=0,1$, and 12 . For $n>12, F_{n}$ increases faster than n, letting us conclude that these are the only n, as may be seen by the inductive argument that follows.
In the case that $n=13$, clearly $F_{n}=F_{13}=233>169=13^{2}=n^{2}$. Similarly, in the case that $n=14, F_{n}=F_{14}=377>196=14^{2}=n^{2}$. Then, assuming $F_{n}>n^{2}$ for $n>12$, we must show that $F_{n+1}>(n+1)^{2}$. But

$$
\begin{aligned}
F_{n+1} & =F_{n}+F_{n-1} \\
& >n^{2}+(n-1)^{2} \\
& =n^{2}+n^{2}-2 n+1 \\
& >n^{2}+2 n+1 \\
& =(n+1)^{2}
\end{aligned}
$$

since $n>12$ by hypothesis, and hence the conclusion.
6. [HM10] Prove Eq. (5).

Proposition. $\left(\begin{array}{cc}F_{n+1} & F_{n} \\ F_{n} & F_{n-1}\end{array}\right)=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)^{n}$.
Proof. Let n be an arbitrary positive integer. We must show that

$$
\left(\begin{array}{cc}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n}
$$

In the case that $n=1$,

$$
\begin{aligned}
\left(\begin{array}{cc}
F_{1+1} & F_{1} \\
F_{1} & F_{1-1}
\end{array}\right) & =\left(\begin{array}{cc}
F_{2} & F_{1} \\
F_{1} & F_{0}
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{1}
\end{aligned}
$$

and in the case that $n=2$,

$$
\begin{aligned}
\left(\begin{array}{cc}
F_{2+1} & F_{2} \\
F_{2} & F_{2-1}
\end{array}\right) & =\left(\begin{array}{cc}
F_{3} & F_{2} \\
F_{2} & F_{1}
\end{array}\right) \\
& =\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
1+1 & 1+0 \\
1+0 & 1+0
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 \cdot 1+1 \cdot 1 & 1 \cdot 1+1 \cdot 0 \\
1 \cdot 1+0 \cdot 1 & 1 \cdot 1+0 \cdot 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{2}
\end{aligned}
$$

Then, assuming

$$
\left(\begin{array}{cc}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right)^{n}
$$

we must show that

$$
\left(\begin{array}{cc}
F_{n+2} & F_{n+1} \\
F_{n+1} & F_{n}
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right)^{n+1}
$$

But

$$
\begin{aligned}
\left(\begin{array}{cc}
F_{n+2} & F_{n+1} \\
F_{n+1} & F_{n}
\end{array}\right) & =\left(\begin{array}{cc}
F_{n+1}+F_{n} & F_{n}+F_{n-1} \\
F_{n+1} & F_{n}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 \cdot F_{n+1}+1 \cdot F_{n} & 1 \cdot F_{n}+1 \cdot F_{n-1} \\
1 \cdot F_{n+1}+0 \cdot F_{n} & 1 \cdot F_{n}+0 \cdot F_{n-1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right)^{n} \\
& =\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n+1}
\end{aligned}
$$

as we needed to show.

- 7. [15] If n is not a prime number, F_{n} is not a prime number (with one exception). Prove this and find the exception.

Proposition. If n is not a prime number, F_{n} is not a prime number, with the one exception being $n=4$ where $F_{4}=3$.

Proof. Let n be an arbitrary nonnegative integer. We must show that if n is not a prime number, F_{n} is not a prime number, with the one exception being $n=4$ where $F_{4}=3$.

In the case that $n=0$ not prime, $F_{0}=0$ not prime; similarly for $n=1, F_{1}=1$. Otherwise, let us assume $n>2$ not prime, such that d is a proper divisor of $n(d \mid n$, $1<d<n$) such that $n=d m$ for some positive integer m. Deduced from Eq. (6) we know that F_{d} divides F_{n}. Since $d>1, F_{d} \geq 1$; and since $n>2, F_{d}<F_{n}$. That is, $1 \leq F_{d}<F_{n}$.
Hence, F_{n} is not prime in all cases except where $F_{d}=1$, or equivalently since $d>1$, where $d=2$. The only composite number n that has no proper factor greater than 2 is $n=4$, being the one exception, where $F_{4}=3$, as we needed to show.
8. [15] In many cases it is convenient to define F_{n} for negative n, by assuming that $F_{n+2}=F_{n+1}+F_{n}$ for all integers n. Explore this possibility: What is F_{-1} ? What is F_{-2} ? Can F_{-n} be expressed in a simple way in terms of F_{n} ?

Allowing n to range over all integers, we require

$$
F_{1}=F_{0}+F_{-1}
$$

or equivalently,

$$
\begin{aligned}
F_{-1} & =F_{1}-F_{0} \\
& =1-0 \\
& =1
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
F_{-2} & =F_{0}-F_{-1} \\
& =0-1 \\
& =-1,
\end{aligned}
$$

and in general for nonegative n,

$$
F_{-n}=(-1)^{n+1} F_{n}
$$

as is shown below.

Proposition. $F_{-n}=F_{-n+2}-F_{-n+1}=(-1)^{n+1} F_{n}$.
Proof. Let n be an arbitrary nonnegative integer. We must show that

$$
F_{-n}=F_{-n+2}-F_{-n+1}=(-1)^{n+1} F_{n}
$$

In the case that $n=0$,

$$
\begin{aligned}
F_{0} & =F_{2}-F_{1} \\
& =1-1 \\
& =0 \\
& =(-1)^{0+1} F_{0}
\end{aligned}
$$

and in the case that $n=1$,

$$
\begin{aligned}
F_{-1} & =F_{1}-F_{0} \\
& =1-0 \\
& =1 \\
& =(-1)^{1+1} F_{1}
\end{aligned}
$$

Then, assuming

$$
F_{-n}=F_{-n+2}-F_{-n+1}=(-1)^{n+1} F_{n}
$$

we must show that

$$
F_{-(n+1)}=F_{-(n+1)+2}-F_{-(n+1)+1}=(-1)^{(n+1)+1} F_{n+1}
$$

But

$$
\begin{aligned}
F_{-(n+1)} & =F_{-(n+1)+2}-F_{-(n+1)+1} \\
& =F_{-n+1}-F_{-n} \\
& =(-1)^{(n-1)+1} F_{n-1}-(-1)^{n+1} F_{n} \\
& =(-1)^{n} F_{n-1}-(-1)^{n+1} F_{n} \\
& =(-1)^{n} F_{n-1}+(-1)^{n} F_{n} \\
& =(-1)^{n}\left(F_{n-1}+F_{n}\right) \\
& =(-1)^{n} F_{n+1} \\
& =(-1)^{n+2} F_{n+1} \\
& =(-1)^{(n+1)+1} F_{n+1}
\end{aligned}
$$

as we needed to show.
9. [M20] Using the conventions of exercise 8, determine whether Eqs. (4), (6), (14), and (15) still hold when the subscripts are allowed to be any integers.

We determine that Eqs. (4), (6), and (14) hold if n is allowed to range over all the integers, but not Eq. (15), as given by counterexample.

Proposition. $F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n}$ for negative n.
Proof. Let n be an arbitrary negative integer. We must show that

$$
F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n}
$$

In the case that $n=-1$,

$$
F_{0} F_{-2}-F_{-1}^{2}=-1=(-1)^{-1}
$$

and in the case that $n=-2$,

$$
F_{-1} F_{-3}-F_{-2}^{2}=2-1=1=(-1)^{-2}
$$

Then, assuming

$$
F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n}
$$

we must show that

$$
F_{n} F_{n-2}-F_{n-1}^{2}=(-1)^{n-1}
$$

But

$$
\begin{aligned}
F_{n} F_{n-2}-F_{n-1}^{2} & =\left(F_{n+1}-F_{n-1}\right)\left(F_{n}-F_{n-1}\right)-F_{n-1}^{2} \\
& =F_{n+1} F_{n}-F_{n-1} F_{n}-F_{n+1} F_{n-1}+F_{n-1}^{2}-F_{n-1}^{2} \\
& =F_{n+1} F_{n}-F_{n-1} F_{n}-F_{n+1} F_{n-1} \\
& =F_{n}\left(F_{n+1}-F_{n-1}\right)-F_{n+1} F_{n-1} \\
& =F_{n} F_{n}-F_{n+1} F_{n-1} \\
& =F_{n}^{2}-F_{n+1} F_{n-1} \\
& =(-1)\left(F_{n+1} F_{n-1}-F_{n}^{2}\right) \\
& =(-1)(-1)^{n} \\
& =(-1)^{n-1}
\end{aligned}
$$

as we needed to show.

Proposition. $F_{n+m}=F_{m} F_{n+1}+F_{m-1} F_{n}$ for negative n.
Proof. Let n and m be arbitrary integers such that n is negative and m is nonnegative. We must show that

$$
F_{n+m}=F_{m} F_{n+1}+F_{m-1} F_{n}
$$

In the case that $n=-1$,

$$
F_{-1+m}=F_{m-1}=F_{m} F_{0}+F_{m-1} F_{-1}
$$

and in the case that $n=-2$,

$$
F_{-2+m}=F_{m}-F_{m-1}=F_{m} F_{-1}+F_{m-1} F_{-2}
$$

Then, assuming

$$
F_{n+m}=F_{m} F_{n+1}+F_{m-1} F_{n}
$$

we must show that

$$
F_{n+m-1}=F_{m} F_{n}+F_{m-1} F_{n-1}
$$

But

$$
\begin{aligned}
F_{n+m-1} & =F_{n+m+1}-F_{n+m} \\
& =F_{m} F_{n+2}+F_{m-1} F_{n+1}-F_{m} F_{n+1}-F_{m-1} F_{n} \\
& =F_{m}\left(F_{n+2}-F_{n+1}\right)+F_{m-1}\left(F_{n+1}-F_{n}\right) \\
& =F_{m} F_{n}+F_{m-1} F_{n-1}
\end{aligned}
$$

as we needed to show.

Proposition. $F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\hat{\phi}^{n}\right)$ for negative n.
Proof. Let n be an arbitrary negative integer. We must show that

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\hat{\phi}^{n}\right)
$$

In the case that $n=-1$,

$$
\begin{aligned}
F_{-1} & =1 \\
& =\frac{\sqrt{5}}{\sqrt{5}} \\
& =\frac{1}{\sqrt{5}}\left(\frac{-4 \sqrt{5}}{-4}\right) \\
& =\frac{1}{\sqrt{5}}\left(\frac{2(1-\sqrt{5})-2(1+\sqrt{5})}{(1+\sqrt{5})(1-\sqrt{5})}\right) \\
& =\frac{1}{\sqrt{5}}\left(\frac{2}{1+\sqrt{5}}-\frac{2}{1-\sqrt{5}}\right) \\
& =\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{-1}-\left(\frac{1-\sqrt{5}}{2}\right)^{-1}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{-1}-\hat{\phi}^{-1}\right)
\end{aligned}
$$

and in the case that $n=-2$,

$$
\begin{aligned}
F_{-2} & =-1 \\
& =\frac{-\sqrt{5}}{\sqrt{5}} \\
& =\frac{1}{\sqrt{5}}\left(\frac{-16 \sqrt{5})}{16}\right) \\
& =\frac{1}{\sqrt{5}}\left(\frac{4(6-2 \sqrt{5})-4(6+2 \sqrt{5})}{6^{2}-4 \sqrt{5}^{2}}\right) \\
& =\frac{1}{\sqrt{5}}\left(\frac{4}{6+2 \sqrt{5}}-\frac{4}{6-2 \sqrt{5}}\right) \\
& =\frac{1}{\sqrt{5}}\left(\frac{4}{(1+\sqrt{5})^{2}}-\frac{4}{(1-\sqrt{5})^{2}}\right) \\
& =\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{-2}-\left(\frac{1-\sqrt{5}}{2}\right)^{-2}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{-2}-\hat{\phi}^{-2}\right) .
\end{aligned}
$$

Then, assuming

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\hat{\phi}^{n}\right)
$$

we must show that

$$
F_{n-1}=\frac{1}{\sqrt{5}}\left(\phi^{n-1}-\hat{\phi}^{n-1}\right)
$$

But

$$
\begin{aligned}
& F_{n-1}=F_{n+1}-F_{n} \\
& =\frac{1}{\sqrt{5}}\left(\phi^{n+1}-\hat{\phi}^{n+1}\right)-\frac{1}{\sqrt{5}}\left(\phi^{n}-\hat{\phi}^{n}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{n+1}-\hat{\phi}^{n+1}-\phi^{n}+\hat{\phi}^{n}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{n+1}-\phi^{n}-\hat{\phi}^{n+1}+\hat{\phi}^{n}\right) \\
& =\frac{1}{\sqrt{5}}\left((\phi-1) \phi^{n}-(\hat{\phi}-1) \hat{\phi}^{n}\right) \\
& =\frac{1}{\sqrt{5}}\left(\left(\phi^{2}-\phi\right) \phi^{n-1}-\left(\hat{\phi}^{2}-\hat{\phi}\right) \hat{\phi}^{n-1}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi\left(\frac{1+\sqrt{5}}{2}-1\right) \phi^{n-1}-\left(\hat{\phi}^{2}-\hat{\phi}\right) \hat{\phi}^{n-1}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi\left(\frac{-1+\sqrt{5}}{2}\right) \phi^{n-1}-\left(\hat{\phi}^{2}-\hat{\phi}\right) \hat{\phi}^{n-1}\right) \\
& =\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2} \frac{-1+\sqrt{5}}{2} \phi^{n-1}-\left(\hat{\phi}^{2}-\hat{\phi}\right) \hat{\phi}^{n-1}\right) \\
& =\frac{1}{\sqrt{5}}\left(\frac{-1+\sqrt{5}^{2}}{4} \phi^{n-1}-\left(\hat{\phi}^{2}-\hat{\phi}\right) \hat{\phi}^{n-1}\right) \\
& =\frac{1}{\sqrt{5}}\left(\frac{4}{4} \phi^{n-1}-\left(\hat{\phi}^{2}-\hat{\phi}\right) \hat{\phi}^{n-1}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{n-1}-\left(\hat{\phi}^{2}-\hat{\phi}\right) \hat{\phi}^{n-1}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{n-1}-\hat{\phi}\left(\frac{1-\sqrt{5}}{2}-1\right) \hat{\phi}^{n-1}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{n-1}-\hat{\phi}\left(\frac{-1-\sqrt{5}}{2}\right) \hat{\phi}^{n-1}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{n-1}-\frac{1-\sqrt{5}}{2} \frac{-1-\sqrt{5}}{2} \hat{\phi}^{n-1}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{n-1}-\frac{-1+\sqrt{5}^{2}}{4} \hat{\phi}^{n-1}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{n-1}-\frac{4}{4} \hat{\phi}^{n-1}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{n-1}-\hat{\phi}^{n-1}\right)
\end{aligned}
$$

as we needed to show.

Proposition. $F_{n} \neq \frac{\phi^{n}}{\sqrt{5}}$ rounded to the nearest integer for negative n.

Proof. Consider $n=-1$. Then $F_{-1}=1$ but since $\sqrt{5}>2$,

$$
\begin{aligned}
\frac{\phi^{-1}}{\sqrt{5}} & =\frac{2}{1+\sqrt{5}} \frac{1}{\sqrt{5}} \\
& =\frac{2}{\sqrt{5}+5} \\
& <\frac{2}{2+5} \\
& =\frac{2}{7}
\end{aligned}
$$

rounded to the nearest integer is 0 .
10. [15] Is $\phi^{n} / \sqrt{5}$ greater than F_{n} or less than F_{n} ?

From Eq. (14),

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\hat{\phi}^{n}\right)
$$

if and only if

$$
\frac{\phi^{n}}{\sqrt{5}}-F_{n}=\frac{\hat{\phi}^{n}}{\sqrt{5}}
$$

That is, $\frac{\phi^{n}}{\sqrt{5}}$ is greater than F_{n} when

$$
\frac{\hat{\phi}^{n}}{\sqrt{5}}>0 \quad \Longleftrightarrow \quad \hat{\phi}^{n}>0
$$

and less than F_{n} when negative. Since

$$
\begin{aligned}
\sqrt{5}>1 & \Longleftrightarrow 1-\sqrt{5}<0 \\
& \Longleftrightarrow \frac{1-\sqrt{5}}{2}<0 \\
& \Longleftrightarrow \hat{\phi}<0
\end{aligned}
$$

we have that $\hat{\phi}^{n}>0$ when n is even, negative when odd. That is, $\frac{\phi^{n}}{\sqrt{5}}$ is greater than F_{n} when n is even, less than F_{n} when n is odd.
11. [M20] Show that $\phi^{n}=F_{n} \phi+F_{n-1}$ and $\hat{\phi}^{n}=F_{n} \hat{\phi}+F_{n-1}$, for all integers n.

We show both identities.

Proposition. $\phi^{n}=F_{n} \phi+F_{n-1}$.
Proof. Let n be an arbitrary integer. We must show that

$$
\phi^{n}=F_{n} \phi+F_{n-1}
$$

We divide the proof into two cases: n nonnegative, or n nonpositive.
In the case that n is nonnegative, if $n=0$,

$$
\phi^{0}=1=0+1=F_{0} \phi+F_{-1}
$$

and if $n=1$,

$$
\phi^{1}=\phi+0=F_{1} \phi+F_{0}
$$

Then, assuming

$$
\phi^{n}=F_{n} \phi+F_{n-1}
$$

we must show that

$$
\phi^{n+1}=F_{n+1} \phi+F_{n}
$$

But

$$
\begin{aligned}
\phi^{n+1} & =\phi \phi^{n} \\
& =\phi\left(F_{n} \phi+F_{n-1}\right) \\
& =F_{n} \phi^{2}+F_{n-1} \phi \\
& =F_{n}(\phi+1)+F_{n-1} \phi \\
& =F_{n} \phi+F_{n-1} \phi+F_{n} \\
& =\left(F_{n}+F_{n-1}\right) \phi+F_{n} \\
& =F_{n+1} \phi+F_{n} .
\end{aligned}
$$

In the case that n is nonpositive, if $n=0$,

$$
\phi^{0}=1=0+1=F_{0} \phi+F_{-1}
$$

and if $n=-1$,

$$
\phi^{-1}=\phi-1=F_{-1} \phi+F_{-2}
$$

Then, assuming

$$
\phi^{n}=F_{n} \phi+F_{n-1}
$$

we must show that

$$
\phi^{n-1}=F_{n-1} \phi+F_{n-2}
$$

But

$$
\begin{aligned}
\phi^{n-1} & =\phi^{-1} \phi^{n} \\
& =\phi^{-1}\left(F_{n} \phi+F_{n-1}\right) \\
& =F_{n}+F_{n-1} \phi^{-1} \\
& =F_{n-1} \phi^{-1}+F_{n} \\
& =F_{n-1}(\phi-1)+F_{n} \\
& =F_{n-1} \phi+F_{n}-F_{n-1} \\
& =F_{n-1} \phi+F_{n-2} .
\end{aligned}
$$

Therefore,

$$
\phi^{n}=F_{n} \phi+F_{n-1}
$$

for all integers n as we needed to show.

Proposition. $\hat{\phi}^{n}=F_{n} \hat{\phi}+F_{n-1}$.
Proof. Let n be an arbitrary integer. We must show that

$$
\hat{\phi}^{n}=F_{n} \hat{\phi}+F_{n-1} .
$$

We divide the proof into two cases: n nonnegative, or n nonpositive.
In the case that n is nonnegative, if $n=0$,

$$
\hat{\phi}^{0}=1=0+1=F_{0} \hat{\phi}+F_{-1}
$$

and if $n=1$,

$$
\hat{\phi}^{1}=\hat{\phi}+0=F_{1} \hat{\phi}+F_{0}
$$

Then, assuming

$$
\hat{\phi}^{n}=F_{n} \hat{\phi}+F_{n-1}
$$

we must show that

$$
\hat{\phi}^{n+1}=F_{n+1} \hat{\phi}+F_{n}
$$

But

$$
\begin{aligned}
\hat{\phi}^{n+1} & =\hat{\phi} \hat{\phi}^{n} \\
& =\hat{\phi}\left(F_{n} \hat{\phi}+F_{n-1}\right) \\
& =F_{n} \hat{\phi}^{2}+F_{n-1} \hat{\phi} \\
& =F_{n}(\hat{\phi}+1)+F_{n-1} \hat{\phi} \\
& =F_{n} \hat{\phi}+F_{n-1} \hat{\phi}+F_{n} \\
& =\left(F_{n}+F_{n-1}\right) \hat{\phi}+F_{n} \\
& =F_{n+1} \hat{\phi}+F_{n} .
\end{aligned}
$$

In the case that n is nonpositive, if $n=0$,

$$
\hat{\phi}^{0}=1=0+1=F_{0} \hat{\phi}+F_{-1}
$$

and if $n=-1$,

$$
\hat{\phi}^{-1}=\hat{\phi}-1=F_{-1} \hat{\phi}+F_{-2}
$$

Then, assuming

$$
\hat{\phi}^{n}=F_{n} \hat{\phi}+F_{n-1}
$$

we must show that

$$
\hat{\phi}^{n-1}=F_{n-1} \hat{\phi}+F_{n-2}
$$

But

$$
\begin{aligned}
\hat{\phi}^{n-1} & =\hat{\phi}^{-1} \hat{\phi}^{n} \\
& =\hat{\phi}^{-1}\left(F_{n} \hat{\phi}+F_{n-1}\right) \\
& =F_{n}+F_{n-1} \hat{\phi}^{-1} \\
& =F_{n-1} \hat{\phi}^{-1}+F_{n} \\
& =F_{n-1}(\hat{\phi}-1)+F_{n} \\
& =F_{n-1} \hat{\phi}+F_{n}-F_{n-1} \\
& =F_{n-1} \hat{\phi}+F_{n-2} .
\end{aligned}
$$

Therefore,

$$
\hat{\phi}^{n}=F_{n} \hat{\phi}+F_{n-1}
$$

for all integers n as we needed to show.

- 12. [M26] The "second order" Fibonacci sequence is defined by the rule

$$
\mathcal{F}_{0}=0, \quad \mathcal{F}_{1}=1, \quad \mathcal{F}_{n+2}=\mathcal{F}_{n+1}+\mathcal{F}_{n}+F_{n}
$$

Express \mathcal{F}_{n} in terms of F_{n} and F_{n+1}. [Hint: Use generating functions.]

Let

$$
\begin{aligned}
& \mathcal{G}(z)=\sum \mathcal{F}_{n} z^{n}=\mathcal{F}_{0}+\mathcal{F}_{1} z+\mathcal{F}_{2} z^{2}+\cdots, \\
& G(z)=\sum F_{n} z^{n}=F_{0}+F_{1} z+F_{2} z^{2}+\cdots,
\end{aligned}
$$

and note that

$$
F_{n}=\mathcal{F}_{n+2}-\mathcal{F}_{n+1}-\mathcal{F}_{n}
$$

Then

$$
\begin{aligned}
z \mathcal{G}(z) & =\sum \mathcal{F}_{n} z^{n+1}=\mathcal{F}_{0} z+\mathcal{F}_{1} z^{2}+\mathcal{F}_{2} z^{3}+\cdots \\
z^{2} \mathcal{G}(z) & =\sum \mathcal{F}_{n} z^{n+2}=\mathcal{F}_{0} z^{2}+\mathcal{F}_{1} z^{3}+\mathcal{F}_{2} z^{4}+\cdots,
\end{aligned}
$$

and

$$
\begin{aligned}
\left(1-z-z^{2}\right) \mathcal{G}(z) & =\mathcal{F}_{0}+\left(\mathcal{F}_{1}-\mathcal{F}_{0}\right) z+\sum_{n \geq 2}\left(\mathcal{F}_{n}-\mathcal{F}_{n-1}-\mathcal{F}_{n-2}\right) z^{n} \\
& =\mathcal{F}_{0}+\left(\mathcal{F}_{1}-\mathcal{F}_{0}\right) z+\left(\mathcal{F}_{2}-\mathcal{F}_{1}-\mathcal{F}_{0}\right) z^{2}+\cdots \\
& =0+z+F_{0} z^{2}+\cdots \\
& =z+\sum F_{n} z^{n+2} \\
& =z+z^{2} \sum F_{n} z^{n} \\
& =z+z^{2} G(z) .
\end{aligned}
$$

From Eq. (11)

$$
\frac{z}{G(z)} \mathcal{G}(z)=z+z^{2} G(z)
$$

if and only if by definition and from Eq. (17)

$$
\begin{aligned}
\mathcal{G}(z) & =G(z)+z G^{2}(z) \\
& =\sum F_{n} z^{n}+z \sum\left(\frac{1}{2}(n-1) F_{n}+\frac{2}{5} n F_{n-1}\right) z^{n} \\
& =\sum F_{n+1} z^{n+1}+\sum\left(\frac{1}{2}(n-1) F_{n}+\frac{2}{5} n F_{n-1}\right) z^{n+1} \\
& =\sum\left(F_{n+1}+\frac{1}{2}(n-1) F_{n}+\frac{2}{5} n F_{n-1}\right) z^{n+1} \\
& =\sum\left(F_{n}+\frac{1}{2}(n-2) F_{n-1}+\frac{2}{5}(n-1) F_{n-2}\right) z^{n}
\end{aligned}
$$

But

$$
\begin{aligned}
F_{n} & +\frac{1}{2}(n-2) F_{n-1}+\frac{2}{5}(n-1) F_{n-2} \\
& =F_{n-1}+F_{n-2}+\frac{n-2}{5} F_{n-1}+\frac{2 n-2}{5} F_{n-2} \\
& =\frac{n+3}{5} F_{n-1}+\frac{2 n+3}{5} F_{n-2} \\
& =\frac{2 n+3}{5} F_{n-1}+\frac{2 n+3}{5} F_{n-2}-\frac{n}{5} F_{n-1} \\
& =\frac{2 n+3}{5} F_{n}-\frac{n}{5} F_{n-1} \\
& =\frac{3 n+3}{5} F_{n}-\frac{n}{5} F_{n}-\frac{n}{5} F_{n-1} \\
& =\frac{3 n+3}{5} F_{n}-\frac{n}{5} F_{n+1} .
\end{aligned}
$$

That is

$$
\mathcal{F}_{n}=\frac{3 n+3}{5} F_{n}-\frac{n}{5} F_{n+1}
$$

- 13. [M22] Express the following sequences in terms of the Fibonacci numbers, when r, s, and c are given constants.
a) $a_{0}=r, a_{1}=s ; a_{n+2}=a_{n+1}+a_{n}$ for $n \geq 0$.
b) $b_{0}=0, b_{1}=1 ; b_{n+2}=b_{n+1}+b_{n}+c$, for $n \geq 0$.

We may express the sequences in terms of the Fibonacci numbers.
a) Allowing for negative n so that $F_{-1}=1$, we can express a_{n} in terms of the Fibonacci numbers as

$$
\begin{aligned}
& a_{0}=r=s F_{0}+r F_{-1} \\
& a_{1}=s=s F_{1}+r F_{0} \\
& a_{2}=a_{1}+a_{0}=s F_{1}+r F_{0}+s F_{0}+r F_{-1}=s F_{2}+r F_{1}
\end{aligned}
$$

and in general for $n \geq 0$ as

$$
a_{n}=s F_{n}+r F_{n-1}
$$

We may prove this by induction. In the case that $n=0, a_{0}=s F_{0}+r F_{-1}$; and in the case that $n=1, a_{1}=s F_{1}+r F_{0}$. Then, assuming $a_{n}=s F_{n}+r F_{n-1}$, we must show that $a_{n+1}=s F_{n+1}+r F_{n}$. But

$$
\begin{aligned}
a_{n+1} & =a_{n}+a_{n-1} \\
& =s F_{n}+r F_{n-1}+s F_{n-1}+r F_{n-2} \\
& =s\left(F_{n}+F_{n-1}\right)+r\left(F_{n-1}+F_{n-2}\right) \\
& =s F_{n+1}+r F_{n}
\end{aligned}
$$

and hence the result.
b) We can express b_{n} in terms of the Fibonacci numbers by first analyzing the derivative sequence $b_{n}^{\prime}=b_{n}+c$ as

$$
\begin{aligned}
b_{0}^{\prime}= & b_{0}+c=0+c=c \\
b_{1}^{\prime}= & b_{1}+c=1+c \\
& \cdots \\
b_{n+2}^{\prime}= & b_{n+2}+c=b_{n+1}+b_{n}+c+c=b_{n+1}^{\prime}+b_{n}^{\prime}
\end{aligned}
$$

From (a) we have that

$$
b_{n}^{\prime}=(1+c) F_{n}+c F_{n-1}
$$

if and only if

$$
b_{n}=(1+c) F_{n}+c F_{n-1}-c
$$

for $n \geq 0$.
14. [M28] Let m be a fixed positive integer. Find a_{n}, given that

$$
a_{0}=0, \quad a_{1}=1 ; \quad a_{n+2}=a_{n+1}+a_{n}+\binom{n}{m}, \quad \text { for } n \geq 0
$$

First, we note that for nonnegative integers $n \geq 0$

$$
\begin{equation*}
F_{n}=\sum_{0 \leq k \leq n-1}\binom{k}{n-k-1} \tag{14.1}
\end{equation*}
$$

which may be shown using induction, since

$$
F_{0}=0=\sum_{0 \leq k \leq-1}\binom{k}{-k-1}
$$

and

$$
F_{1}=1=\sum_{0 \leq k \leq 0}\binom{k}{-k}
$$

and assuming

$$
F_{n}=\sum_{0 \leq k \leq n-1}\binom{k}{n-k-1}
$$

implies

$$
\left.\begin{array}{rl}
F_{n+1} & =F_{n}+F_{n-1} \\
& =\sum_{0 \leq k \leq n-1}\binom{k}{n-k-1}+\sum_{0 \leq k \leq n-2}\binom{k}{n-k-2} \\
& =\binom{n-1}{0}+\sum_{0 \leq k \leq n-2}\binom{k}{n-k-1}+\sum_{0 \leq k \leq n-2}\binom{k}{n-k-2} \\
& =1+\sum_{0 \leq k \leq n-2}\binom{k}{n-k-1}+\sum_{0 \leq k \leq n-2}\binom{k+1}{n-k-2} \\
& =1+\sum_{0 \leq k \leq n-2}\left(\begin{array}{c}
k-k-1
\end{array}\right) \\
& =1+\sum_{1 \leq k \leq n-1}\binom{k}{n-k} \\
& =1+\sum_{0 \leq k \leq n-1}\binom{k}{n-k}-\binom{0}{n} \\
n-k
\end{array}\right)
$$

Second, we note that for nonnegative integers $m, n \geq 0$

$$
\begin{equation*}
\sum_{0 \leq k \leq m}\left(\binom{n+k}{m-k}-\binom{n+k+1}{m-k-1}\right)=\binom{n}{m} \tag{14.2}
\end{equation*}
$$

which may be shown using induction, since

$$
\binom{n}{0}-\binom{n+1}{-1}=1-0=1=\binom{n}{0}
$$

and

$$
\binom{n}{0}-\binom{n+1}{-1}+\binom{n}{1}-\binom{n+1}{0}=1+n-1=n=\binom{n}{1}
$$

and assuming

$$
\sum_{0 \leq k \leq m}\left(\binom{n+k}{m-k}-\binom{n+k+1}{m-k-1}\right)=\binom{n}{m}
$$

including the induction basis $\binom{n-1}{n-m-2}=\binom{n-1}{n-1-(m+1)}=\binom{n-1}{m+1}$, implies

$$
\begin{aligned}
& \sum_{0 \leq k \leq m+1}\left(\binom{n+k}{m+1-k}-\binom{n+k+1}{m+1-k-1}\right) \\
= & \sum_{0 \leq k \leq m+1}\left(\binom{n+k}{m-k+1}-\binom{n+k+1}{m-k}\right) \\
= & \left(\binom{n+(m+1)}{m-(m+1)+1}-\binom{n+(m+1)+1}{m-(m+1)}\right)+\sum_{0 \leq k \leq m}\left(\binom{n+k}{m-k+1}-\binom{n+k+1}{m-k}\right) \\
= & \left.\left(\binom{n+m+1}{0}-\binom{n+m+2}{-1}\right)+\sum_{0 \leq k \leq m}\binom{n+k}{m-k+1}-\binom{n+k+1}{m-k}\right) \\
= & (1-0)+\sum_{0 \leq k \leq m}\left(\binom{n+k}{m-k+1}-\binom{n+k+1}{m-k}\right) \\
= & \left.\left(\binom{n+m}{0}-\binom{n+m+1}{-1}\right)+\sum_{0 \leq k \leq m}\binom{n+k}{m-k+1}-\binom{n+k+1}{m-k}\right) \\
= & \left(\binom{n-1+(m+1)}{m+1-(m+1)}-\binom{n+(m+1)}{m-(m+1)}\right) \\
& +\sum_{0 \leq k \leq m}^{m}\left(\binom{n-1+k}{m+1-k}-\binom{n+k}{m-k}+\binom{n-1+k}{m-k}-\binom{n+k}{m-k-1}\right) \\
= & \left.\sum_{0 \leq k \leq m+1}\left(\binom{n-1+k}{m+1-k}-\binom{n+k}{m-k}\right)+\sum_{0 \leq k \leq m}\binom{n-1+k}{m-k}-\binom{n+k}{m-k-1}\right) \\
= & \left.\left.\sum_{0 \leq k \leq m+1}^{n+1}\left(\binom{n-1+k}{m+1-k}-\binom{n-1+k+1}{m+1-k-1}\right)+\sum_{0 \leq k \leq m}^{n-1+k} \begin{array}{l}
n-k-1
\end{array}\right)-\binom{n-1+k+1}{m-k-1}\right) \\
= & \binom{n-1}{m+1}+\binom{n-1}{m} . \\
= & \binom{n}{m+1} .
\end{aligned}
$$

Finally, we claim that

$$
a_{n}=F_{m+n+1}+F_{n}-\sum_{0 \leq k \leq m}\binom{n+k}{m-k}
$$

In the case that $n=0$,

$$
\begin{align*}
a_{0} & =0 \\
& =F_{m+1}-\sum_{0 \leq k \leq m+1-1}\binom{k}{m+1-k-1} \tag{14.1}\\
& =F_{m+1}-\sum_{0 \leq k \leq m}\binom{k}{m-k} \\
& =F_{m+1}+0-\sum_{0 \leq k \leq m}\binom{0+k}{m-k} \\
& =F_{m+1}+F_{0}-\sum_{0 \leq k \leq m}\binom{0+k}{m-k}
\end{align*}
$$

and in the case that $n=1$,

$$
\begin{align*}
a_{1} & =1 \\
& =F_{1} \\
& =F_{1}+0 \\
& =F_{1}+F_{m+2}-\sum_{0 \leq 1+k \leq m+2-1}\binom{1+k}{m+2-(1+k)-1} \tag{14.1}\\
& =F_{m+2}+F_{1}-\sum_{-1 \leq k \leq m}\binom{1+k}{m-k} \\
& =F_{m+2}+F_{1}-\sum_{0 \leq k \leq m}\binom{1+k}{m-k}-\binom{0}{m+1} \\
& =F_{m+2}+F_{1}-\sum_{0 \leq k \leq m}\binom{1+k}{m-k}-0 \\
& =F_{m+2}+F_{1}-\sum_{0 \leq k \leq m}\binom{1+k}{m-k}
\end{align*}
$$

Then, assuming

$$
a_{n}=F_{m+n+1}+F_{n}-\sum_{0 \leq k \leq m}\binom{n+k}{m-k}
$$

we must show that

$$
a_{n+1}=F_{m+n+2}+F_{n+1}-\sum_{0 \leq k \leq m}\binom{n+k+1}{m-k}
$$

But

$$
\begin{aligned}
a_{n+1}= & a_{n}+a_{n-1}+\binom{n-1}{m} \\
= & F_{m+n+1}+F_{n}-\sum_{0 \leq k \leq m}\binom{n+k}{m-k}+F_{m+n}+F_{n-1}-\sum_{0 \leq k \leq m}\binom{n+k-1}{m-k}+\binom{n-1}{m} \\
= & F_{m+n+2}+F_{n+1}-\sum_{0 \leq k \leq m}\binom{n+k}{m-k}-\sum_{0 \leq k \leq m}\binom{n+k-1}{m-k}+\binom{n-1}{m} \\
= & F_{m+n+2}+F_{n+1}-\sum_{0 \leq k \leq m}\left(\binom{n+k}{m-k}+\binom{n+k-1}{m-k}\right) \\
& +\sum_{0 \leq k \leq m}\left(\binom{n-1+k}{m-k}-\binom{n-1+k+1}{m-k-1}\right) \\
= & F_{m+n+2}+F_{n+1}+\sum_{0 \leq k \leq m}\left(\binom{n+k-1}{m-k}-\binom{n+k}{m-k}-\binom{n+k-1}{m-k}-\binom{n+k}{m-k-1}\right) \\
= & F_{m+n+2}+F_{n+1}-\sum_{0 \leq k \leq m}\left(\binom{n+k}{m-k}+\binom{n+k}{m-k-1}\right) \\
= & F_{m+n+2}+F_{n+1}-\sum_{0 \leq k \leq m}\binom{n+k+1}{m-k}
\end{aligned}
$$

from (14.2)
and hence the result.
15. [M22] Let $f(n)$ and $g(n)$ be arbitrary functions, and for $n \geq 0$ let

$$
\begin{array}{lll}
a_{0}=0, & a_{1}=1, & a_{n+2}=a_{n+1}+a_{n}+f(n) \\
b_{0}=0, & b_{1}=1, & b_{n+2}=b_{n+1}+b_{n}+g(n) \\
c_{0}=0, & c_{1}=1, & c_{n+2}=c_{n+1}+c_{n}+x f(n)+y g(n) .
\end{array}
$$

Express c_{n} in terms of x, y, a_{n}, b_{n}, and F_{n}.
We first prove two corollaries.

Proposition. $a_{n}=F_{n}+\sum_{1 \leq k \leq n-1} F_{k} f(n-k-1)$.
Proof. Let $f(n)$ be an arbitrary function and a_{n} defined as

$$
a_{n+2}=a_{n+1}+a_{n}+f(n)
$$

for $n \geq 0$ with $a_{1}=1$ and $a_{0}=0$. We will show that

$$
\begin{equation*}
a_{n}=F_{n}+\sum_{1 \leq k \leq n-1} F_{k} f(n-k-1) . \tag{15.1}
\end{equation*}
$$

In the case that $n=0$,

$$
a_{0}=0=F_{0}+\sum_{1 \leq k \leq-1} F_{k} f(n-k-1)
$$

and in the case that $n=1$,

$$
a_{1}=1=F_{1}+\sum_{1 \leq k \leq 0} F_{k} f(n-k-1) .
$$

Then, assuming

$$
a_{n}=F_{n}+\sum_{1 \leq k \leq n-1} F_{k} f(n-k-1)
$$

we must show that

$$
a_{n+1}=F_{n+1}+\sum_{1 \leq k \leq n} F_{k} f(n-k)
$$

But

$$
\begin{aligned}
& a_{n+1} \\
&=a_{n}+a_{n-1}+f(n-1) \\
&=F_{n}+\sum_{1 \leq k \leq n-1} F_{k} f(n-k-1)+F_{n-1}+\sum_{1 \leq k \leq n-2} F_{k} f(n-k-2)+f(n-1) \\
&=F_{n}+F_{n-1}+f(n-1)+\sum_{1 \leq k \leq n-1} F_{k} f(n-k-1)+\sum_{1 \leq k \leq n-2} F_{k} f(n-k-2) \\
&=F_{n+1}+f(n-1)+\sum_{1 \leq k \leq n-1} F_{k} f(n-k-1)+\sum_{1 \leq k \leq n-2} F_{k} f(n-k-2) \\
&=F_{n+1}+f(n-1)+\sum_{2 \leq k \leq n} F_{k-1} f(n-k)+\sum_{3 \leq k \leq n} F_{k-2} f(n-k) \\
&=F_{n+1}+f(n-1)+\sum_{2 \leq k \leq n} F_{k-1} f(n-k)+\sum_{2 \leq k \leq n} F_{k-2} f(n-k) \\
&=F_{n+1}+f(n-1)+\sum_{2 \leq k \leq n}\left(F_{k-1}+F_{k-2}\right) f(n-k) \\
&=F_{n+1}+f(n-1)+\sum_{2 \leq k \leq n} F_{k} f(n-k) \\
&=F_{n+1}+\sum_{1 \leq k \leq n} F_{k} f(n-k)
\end{aligned}
$$

and hence the result.

Proposition. $c_{n}=F_{n}+x \sum_{1 \leq k \leq n-1} F_{k} f(n-k-1)+y \sum_{1 \leq k \leq n-1} F_{k} g(n-k-1)$.
Proof. Let $f(n)$ and $g(n)$ be arbitrary functions; and a_{n}, b_{n}, c_{n} defined as

$$
\begin{array}{lll}
a_{0}=0, & a_{1}=1, & \\
b_{0}=0, & a_{n+2}=a_{n+1}+a_{n}+f(n) \\
c_{0}=1, & & b_{n+2}=b_{n+1}+b_{n}+g(n) \\
c_{1}=1, & & c_{n+2}=c_{n+1}+c_{n}+x f(n)+y g(n) .
\end{array}
$$

We will show that

$$
\begin{equation*}
c_{n}=F_{n}+x \sum_{1 \leq k \leq n-1} F_{k} f(n-k-1)+y \sum_{1 \leq k \leq n-1} F_{k} g(n-k-1) \tag{15.2}
\end{equation*}
$$

In the case that $n=0$,

$$
c_{0}=0=F_{0}+x \sum_{1 \leq k \leq-1} F_{k} f(n-k-1)+y \sum_{1 \leq k \leq-1} F_{k} g(n-k-1)
$$

and in the case that $n=1$,

$$
c_{1}=1=F_{1}+x \sum_{1 \leq k \leq 0} F_{k} f(n-k-1)+y \sum_{1 \leq k \leq 0} F_{k} f(n-k-1)
$$

Then, assuming

$$
c_{n}=F_{n}+x \sum_{1 \leq k \leq n-1} F_{k} f(n-k-1)+y \sum_{1 \leq k \leq n-1} F_{k} g(n-k-1)
$$

we must show that

$$
c_{n+1}=F_{n+1}+x \sum_{1 \leq k \leq n} F_{k} f(n-k)+y \sum_{1 \leq k \leq n} F_{k} g(n-k) .
$$

But

$$
\begin{aligned}
c_{n+1} & \\
= & c_{n}+c_{n-1}+x f(n-1)+y g(n-1) \\
= & F_{n}+x \sum_{1 \leq k \leq n-1} F_{k} f(n-k-1)+y \sum_{1 \leq k \leq n-1} F_{k} g(n-k-1) \\
& +F_{n-1}+x \sum_{1 \leq k \leq n-2} F_{k} f(n-k-2)+y \sum_{1 \leq k \leq n-2} F_{k} g(n-k-2) \\
& +x f(n-1)+y g(n-1) \\
= & F_{n+1}+x f(n-1)+y g(n-1) \\
& +x \sum_{1 \leq k \leq n-1} F_{k} f(n-k-1)+y \sum_{1 \leq k \leq n-1} F_{k} g(n-k-1) \\
& +x \sum_{1 \leq k \leq n-2} F_{k} f(n-k-2)+y \sum_{1 \leq k \leq n-2} F_{k} g(n-k-2) \\
= & F_{n+1}+x f(n-1)+y g(n-1) \sum_{2 \leq 1} \sum_{2 \leq k \leq n} F_{k-1} g(n-k) \\
& +x \sum_{2 \leq k \leq n} F_{k-1} f(n-k)+y \sum_{2 \leq 2} g(n-k) \\
& +x \sum_{3 \leq k \leq n} F_{k-2} f(n-k)+y \sum_{3 \leq n} F_{k-2}(n) \\
= & F_{n+1}+x f(n-1)+y g(n-1)
\end{aligned}
$$

$$
+x \sum_{2 \leq k \leq n} F_{k-1} f(n-k)+y \sum_{2 \leq k \leq n} F_{k-1} g(n-k)
$$

$$
+x \sum_{2 \leq k \leq n} F_{k-2} f(n-k)+y \sum_{2 \leq k \leq n} F_{k-2} g(n-k)
$$

$$
=F_{n+1}+x f(n-1)+y g(n-1)
$$

$$
+x \sum_{2 \leq k \leq n}\left(F_{k-1}+F_{k-2}\right) f(n-k)
$$

$$
+y \sum_{2 \leq k \leq n}^{-}\left(F_{k-1}+F_{k-2}\right) g(n-k)
$$

$$
=F_{n+1}+x f(n-1)+y g(n-1)+x \sum_{2 \leq k \leq n} F_{k} f(n-k)+y \sum_{2 \leq k \leq n} F_{k} g(n-k)
$$

$$
=F_{n+1}+x \sum_{1 \leq k \leq n} F_{k} f(n-k)+y \sum_{1 \leq k \leq n} F_{k} g(n-k)
$$

and hence the result.

We then solve for c_{n} as

$$
\begin{aligned}
c_{n} & =F_{n}+x \sum_{1 \leq k \leq n-1} F_{k} f(n-k-1)+y \sum_{1 \leq k \leq n-1} F_{k} g(n-k-1) & & \text { from (15.2) } \\
& =F_{n}+x\left(a_{n}-F_{n}\right)+y\left(b_{n}-F_{n}\right) & & \\
& =x a_{n}+y b_{n}+F_{n}-x F_{n}-y F_{n} & & \text { from (15.1) } \\
& =x a_{n}+y b_{n}+(1-x-y) F_{n} . & &
\end{aligned}
$$

- 16. [M20] Fibonacci numbers appear implicitly in Pascal's triangle if it is viewed from the right angle. Show that the following sum of binomial coefficients is a Fibonacci number:

$$
\sum_{k=0}^{n}\binom{n-k}{k}
$$

We may prove that the sum is a Fibonacci number.

Proposition. $\sum_{0 \leq k \leq n}\binom{n-k}{k}=F_{n+1}$.
Proof. Let n be an arbitrary nonnegative integer such that $n \geq 0$. We must show that

$$
\sum_{0 \leq k \leq n}\binom{n-k}{k}=F_{n+1}
$$

In the case that $n=0$,

$$
\sum_{0 \leq k \leq 0}\binom{-k}{k}=\binom{0}{0}=1=F_{1}
$$

and in the case that $n=1$,

$$
\sum_{0 \leq k \leq 1}\binom{1-k}{k}=\binom{1}{0}+\binom{0}{1}=1+0=F_{2}
$$

Then, assuming

$$
\sum_{0 \leq k \leq n}\binom{n-k}{k}=F_{n+1}
$$

we must show that

$$
\sum_{0 \leq k \leq n+1}\binom{n+1-k}{k}=F_{n+2}
$$

But

$$
\begin{aligned}
& \sum_{0 \leq k \leq n+1}\binom{n+1-k}{k} \\
& =\binom{0}{n+1}+\sum_{0 \leq k \leq n}\binom{n+1-k}{k} \\
& =\sum_{0 \leq k \leq n}\binom{n+1-k}{k} \\
& =\sum_{0 \leq k \leq n}\left(\binom{n-k}{k}+\binom{n-k}{k-1}\right) \\
& =\sum_{0 \leq k \leq n}\binom{n-k}{k}+\sum_{0 \leq k \leq n}\binom{(n-1)-(k-1)}{k-1} \\
& =F_{n+1}+\sum_{0 \leq k \leq n}\binom{(n-1)-(k-1)}{k-1} \\
& =F_{n+1}+\sum_{-1 \leq k \leq n-1}\binom{n-1-k}{k} \\
& =F_{n+1}+\binom{n}{-1}+\sum_{0 \leq k \leq n-1}\binom{n-1-k}{k} \\
& =F_{n+1}+\sum_{0 \leq k \leq n-1}\binom{n-k}{k} \\
& =F_{n+1}+F_{n} \\
& =F_{n+2}
\end{aligned}
$$

as we needed to show.
17. [M24] Using the conventions of exercise 8, prove the following generalization of Eq. (4): $F_{n+k} F_{m-k}-$ $F_{n} F_{m}=(-1)^{n} F_{m-n-k} F_{k}$.

We may prove the generalization, but first, a corollary.

Proposition. $\left(x^{n+k}-y^{n+k}\right)\left(x^{m-k}-y^{m-k}\right)-\left(x^{n}-y^{n}\right)\left(x^{m}-y^{m}\right)=(x y)^{n}\left(x^{m-n-k}-\right.$ $\left.y^{m-n-k}\right)\left(x^{k}-y^{k}\right)$.
Proof. Let x, y be arbitrary reals and m, n, k arbitrary integers. We must show that

$$
\begin{array}{r}
\left(x^{n+k}-y^{n+k}\right)\left(x^{m-k}-y^{m-k}\right)-\left(x^{n}-y^{n}\right)\left(x^{m}-y^{m}\right) \\
=(x y)^{n}\left(x^{m-n-k}-y^{m-n-k}\right)\left(x^{k}-y^{k}\right) . \tag{17.1}
\end{array}
$$

But

$$
\begin{aligned}
& \left(x^{n+k}-y^{n+k}\right)\left(x^{m-k}-y^{m-k}\right)-\left(x^{n}-y^{n}\right)\left(x^{m}-y^{m}\right) \\
& \quad=(x y)^{n}\left(\left(x^{k} y^{-n}-x^{-n} y^{k}\right)\left(x^{m-n-k} y^{-n}-x^{-n} y^{m-n-k}\right)\right. \\
& \left.\quad-\left(y^{-n}-x^{-n}\right)\left(x^{m-n} y^{-n}-x^{-n} y^{m-n}\right)\right) \\
& ==-x^{m-k} y^{n+k}-x^{n+k} y^{m-k}+x^{m} y^{n}+x^{n} y^{m} \\
& =(x y)^{n}\left(-x^{m-n-k} y^{k}-x^{k} y^{m-n-k}+x^{m-n}+y^{m-n}\right) \\
& =(x y)^{n}\left(x^{m-n-k}-y^{m-n-k}\right)\left(x^{k}-y^{k}\right)
\end{aligned}
$$

and hence the result.

Finally, the proof.

Proposition. $F_{n+k} F_{m-k}-F_{n} F_{m}=(-1)^{n} F_{m-n-k} F_{k}$.
Proof. Let m, n, k be arbitrary integers, and allow for negative indexed Fibonacci numbers so that $F_{-n}=(-1)^{n+1} F_{n}$. We must show that

$$
F_{n+k} F_{m-k}-F_{n} F_{m}=(-1)^{n} F_{m-n-k} F_{k} .
$$

But since $\phi^{n}=(1-\hat{\phi})^{n}=-\hat{\phi}^{-n}$,

$$
\begin{aligned}
F_{n+k} & F_{m-k}-F_{n} F_{m} \\
& =\frac{1}{\sqrt{5}}\left(\phi^{n+k}-\hat{\phi}^{n+k}\right) \frac{1}{\sqrt{5}}\left(\phi^{m-k}-\hat{\phi}^{m-k}\right)-\frac{1}{\sqrt{5}}\left(\phi^{n}-\hat{\phi}^{n}\right) \frac{1}{\sqrt{5}}\left(\phi^{m}-\hat{\phi}^{m}\right) \\
& =\frac{1}{\sqrt{5}^{2}}\left(\left(\phi^{n+k}-\hat{\phi}^{n+k}\right)\left(\phi^{m-k}-\hat{\phi}^{m-k}\right)-\left(\phi^{n}-\hat{\phi}^{n}\right)\left(\phi^{m}-\hat{\phi}^{m}\right)\right) \\
& =\frac{1}{\sqrt{5}^{2}}(\phi \hat{\phi})^{n}\left(\phi^{m-n-k}-\hat{\phi}^{m-n-k}\right)\left(\phi^{k}-\hat{\phi}^{k}\right) \\
& =(\phi \hat{\phi})^{n} \frac{1}{\sqrt{5}}\left(\phi^{m-n-k}-\hat{\phi}^{m-n-k}\right) \frac{1}{\sqrt{5}}\left(\phi^{k}-\hat{\phi}^{k}\right) \\
& =(\phi \hat{\phi})^{n} F_{m-n-k} F_{k} \\
& =\left(\frac{1}{2}(1+\sqrt{5}) \frac{1}{2}(1-\sqrt{5})\right)^{n} F_{m-n-k} F_{k} \\
& =\left(\frac{1}{4}\left(1+\sqrt{5}-\sqrt{5}-\sqrt{5}{ }^{2}\right)\right)^{n} F_{m-n-k} F_{k} \\
& =\left(\frac{-4}{4}\right)^{n} F_{m-n-k} F_{k} \\
& =(-1)^{n} F_{m-n-k} F_{k}
\end{aligned}
$$

as we needed to show.
18. [20] Is $F_{n}^{2}+F_{n+1}^{2}$ always a Fibonacci number?

Yes, $F_{2 n+1}$, as shown below.

Proposition. $F_{n}^{2}+F_{n+1}^{2}=F_{2 n+1}$.
Proof. Let n be an arbitrary nonnegative integer. We must show that

$$
F_{n}^{2}+F_{n+1}^{2}=F_{2 n+1}
$$

In the case that $n=0$,

$$
F_{0}^{2}+F_{1}^{2}=0+1=1=F_{1}
$$

and in the case that $n=1$,

$$
F_{1}^{2}+F_{2}^{2}=1+1=2=F_{3}
$$

Then, assuming

$$
F_{n}^{2}+F_{n+1}^{2}=F_{2 n+1}
$$

we must show that

$$
F_{n+1}^{2}+F_{n+2}^{2}=F_{2 n+3}
$$

But

$$
\begin{aligned}
F_{n+1}^{2}+F_{n+2}^{2} & =\left(F_{n}+F_{n-1}\right)^{2}+\left(F_{n+1}+F_{n}\right)^{2} \\
& =F_{n}^{2}+2 F_{n} F_{n-1}+F_{n-1}^{2}+F_{n+1}^{2}+2 F_{n+1} F_{n}+F_{n}^{2} \\
& =F_{n-1}^{2}+F_{n}^{2}+F_{n}^{2}+F_{n+1}^{2}+2 F_{n} F_{n-1}+2 F_{n+1} F_{n} \\
& =F_{2 n-1}+F_{2 n+1}+2 F_{n} F_{n-1}+2 F_{n+1} F_{n} \\
& =F_{2 n-1}+F_{2 n+1}+2 F_{n} F_{n-1}+2\left(F_{n+n}-F_{n-1} F_{n}\right) \quad \text { from Eq. (6) } \\
& =F_{2 n-1}+F_{2 n+1}+2 F_{n} F_{n-1}+2 F_{2 n}-2 F_{n-1} F_{n} \\
& =F_{2 n-1}+F_{2 n+1}+2 F_{2 n} \\
& =F_{2 n+1}+F_{2 n}+F_{2 n+1} \\
& =F_{2 n+2}+F_{2 n+1} \\
& =F_{2 n+3}
\end{aligned}
$$

as we needed to show.

- 19. [M27] What is $\cos 36^{\circ}$?

We have that

$$
\cos 36^{\circ}=\frac{1+\sqrt{5}}{4}
$$

derived as follows. From the double angle formulas we have that

$$
\begin{aligned}
\cos 72^{\circ} & =\cos \left(2 \cdot 36^{\circ}\right) \\
& =2 \cos ^{2} 36^{\circ}-1
\end{aligned}
$$

and

$$
\begin{aligned}
\cos 36^{\circ} & =\cos \left(2 \cdot 18^{\circ}\right) \\
& =1-2 \sin ^{2} 18^{\circ} \\
& =1-2 \sin ^{2}\left(90^{\circ}-72^{\circ}\right) \\
& =1-2 \cos ^{2} 72^{\circ}
\end{aligned}
$$

That is, that

$$
\begin{aligned}
\cos 72^{\circ}+\cos 36^{\circ} & =2 \cos ^{2} 36^{\circ}-1+1-2 \cos ^{2} 72^{\circ} \\
& =2\left(\cos ^{2} 36^{\circ}-\cos ^{2} 72^{\circ}\right)
\end{aligned}
$$

if and only if

$$
\begin{aligned}
1 & =\frac{2\left(\cos ^{2} 36^{\circ}-\cos ^{2} 72^{\circ}\right)}{\cos 72^{\circ}+\cos 36^{\circ}} \\
& =\frac{2\left(\cos 36^{\circ}-\cos 72^{\circ}\right)\left(\cos ^{2} 72^{\circ}+\cos 36^{\circ}\right)}{\cos 72^{\circ}+\cos 36^{\circ}} \\
& =2\left(\cos 36^{\circ}-\cos 72^{\circ}\right) \\
& =2 \cos 36^{\circ}-2 \cos 72^{\circ} \\
& =2 \cos 36^{\circ}-2\left(2 \cos ^{2} 36^{\circ}-1\right) \\
& =2 \cos 36^{\circ}-4 \cos ^{2} 36^{\circ}+2 ;
\end{aligned}
$$

or equivalently that

$$
2 \cos 36^{\circ}+1=\left(2 \cos 36^{\circ}\right)^{2}
$$

And so, in terms of the golden ratio, since $2 \cos 36^{\circ}=\phi$,

$$
\begin{aligned}
\cos 36^{\circ} & =\frac{1}{2} \phi \\
& =\frac{1}{2} \frac{1+\sqrt{5}}{2} \\
& =\frac{1+\sqrt{5}}{4}
\end{aligned}
$$

and hence the result.
20. [M16] Express $\sum_{k=0}^{n} F_{k}$ in terms of Fibonacci numbers.

We have that

$$
\sum_{k=0}^{n} F_{k}=F_{n+2}-1
$$

as shown here. In the case that $n=0$,

$$
\sum_{k=0}^{0} F_{k}=F_{0}=0=1-1=F_{2}-1
$$

Then, assuming

$$
\sum_{k=0}^{n} F_{k}=F_{n+2}-1
$$

we must show that

$$
\sum_{k=0}^{n+1} F_{k}=F_{n+3}-1
$$

But

$$
\begin{aligned}
\sum_{k=0}^{n+1} F_{k} & =\sum_{k=0}^{n} F_{k}+F_{n+1} \\
& =F_{n+2}-1+F_{n+1} \\
& =F_{n+3}-1
\end{aligned}
$$

and hence the result.
21. [M25] What is $\sum_{k=0}^{n} F_{k} x^{k}$?

We have that

$$
\sum_{k=0}^{n} F_{k} x^{k}= \begin{cases}\frac{x^{n+1} F_{n+1}+x^{n+2} F_{n}-x}{x^{2}+x-1} & \text { if } x^{2}+x \neq 1 \\ \frac{n+1-x^{n} F_{n+1}}{2 x+1} & \text { otherwise }\end{cases}
$$

as shown here. First we consider the case that $x^{2}+x \neq 1$. For $n=0$,

$$
\sum_{k=0}^{0} F_{k} x^{k}=F_{0} x^{0}=0=\frac{0}{x^{2}+x-1}=\frac{x+0-x}{x^{2}+x-1}=\frac{x^{1} F_{1}+x^{2} F_{0}-x}{x^{2}+x-1}
$$

Then, assuming

$$
\sum_{k=0}^{n} F_{k} x^{k}=\frac{x^{n+1} F_{n+1}+x^{n+2} F_{n}-x}{x^{2}+x-1}
$$

we must show that

$$
\sum_{k=0}^{n+1} F_{k} x^{k}=\frac{x^{n+2} F_{n+2}+x^{n+3} F_{n+1}-x}{x^{2}+x-1}
$$

But

$$
\begin{aligned}
& \sum_{k=0}^{n+1} F_{k} x^{k} \\
& \quad=F_{n+1} x^{n+1}+\sum_{k=0}^{n} F_{k} x^{k} \\
& \quad=F_{n+1} x^{n+1}+\frac{x^{n+1} F_{n+1}+x^{n+2} F_{n}-x}{x^{2}+x-1} \\
& \quad=\frac{\left(x^{2}+x-1\right) F_{n+1} x^{n+1}}{x^{2}+x-1}+\frac{x^{n+1} F_{n+1}+x^{n+2} F_{n}-x}{x^{2}+x-1} \\
& \quad=\frac{x^{n+3} F_{n+1}+x^{n+2} F_{n+1}-x^{n+1} F_{n+1}}{x^{2}+x-1}+\frac{x^{n+1} F_{n+1}+x^{n+2} F_{n}-x}{x^{2}+x-1} \\
& \quad=\frac{x^{n+3} F_{n+1}+x^{n+2} F_{n+1}-x^{n+1} F_{n+1}+x^{n+1} F_{n+1}+x^{n+2} F_{n}-x}{x^{2}+x-1} \\
& \quad=\frac{x^{n+2} F_{n+1}+x^{n+2} F_{n}+x^{n+3} F_{n+1}-x}{x^{2}+x-1} \\
& \quad=\frac{x^{n+2}\left(F_{n+1}+F_{n}\right)+x^{n+3} F_{n+1}-x}{x^{2}+x-1} \\
& \quad=\frac{x^{n+2} F_{n+2}+x^{n+3} F_{n+1}-x}{x^{2}+x-1}
\end{aligned}
$$

Last we consider the case that $x^{2}+x=1$. Note that in general since $x^{n+2}=x^{n}-x^{n+1}$,

$$
\begin{equation*}
1=x^{n} F_{n+1}+x^{n+1} F_{n} \tag{21.1}
\end{equation*}
$$

since $1=1+0=x^{0} F_{1}+x^{1} F_{0}$ and $1=x^{n} F_{n+1}+x^{n+1} F_{n} \Longrightarrow 1=x^{n+1} F_{n+2}+x^{n+2} F_{n+1}$ as

$$
\begin{aligned}
x^{n+1} F_{n+2}+x^{n+2} F_{n+1} & =x^{n+1} F_{n+2}+\left(x^{n}-x^{n+1}\right) F_{n+1} \\
& =x^{n+1} F_{n+2}+x^{n} F_{n+1}-x^{n+1} F_{n+1} \\
& =x^{n+1} F_{n+2}-x^{n+1} F_{n+1}+x^{n} F_{n+1} \\
& =x^{n+1}\left(F_{n+2}-F_{n+1}\right)+x^{n} F_{n+1} \\
& =x^{n+1} F_{n}+x^{n} F_{n+1} \\
& =x^{n} F_{n+1}+x^{n+1} F_{n} \\
& =1
\end{aligned}
$$

Again, considering the case that $x^{2}+x=1$, for $n=0$,

$$
\sum_{k=0}^{0} F_{k} x^{k}=F_{0} x^{0}=0=\frac{1-1}{2 x+1}=\frac{1-F_{1}}{2 x+1}=\frac{0+1-x^{0} F_{1}}{2 x+1}
$$

Then, assuming

$$
\sum_{k=0}^{n} F_{k} x^{k}=\frac{n+1-x^{n} F_{n+1}}{2 x+1}
$$

we must show that

$$
\sum_{k=0}^{n+1} F_{k} x^{k}=\frac{n+2-x^{n+1} F_{n+2}}{2 x+1}
$$

But in this case,

$$
\begin{align*}
\sum_{k=0}^{n+1} & F_{k} x^{k} \\
& =F_{n+1} x^{n+1}+\sum_{k=0}^{n} F_{k} x^{k} \\
& =F_{n+1} x^{n+1}+\frac{n+1-x^{n} F_{n+1}}{2 x+1} \\
& =\frac{(2 x+1) F_{n+1} x^{n+1}}{2 x+1}+\frac{n+1-x^{n} F_{n+1}}{2 x+1} \\
& =\frac{2 x F_{n+1} x^{n+1}+F_{n+1} x^{n+1}}{2 x+1}+\frac{n+1-x^{n} F_{n+1}}{2 x+1} \\
& =\frac{2 F_{n+1} x^{n+2}+F_{n+1} x^{n+1}+n+1-x^{n} F_{n+1}}{2 x+1} \\
& =\frac{n+2+2 F_{n+1} x^{n+2}+F_{n+1} x^{n+1}-1-x^{n} F_{n+1}}{2 x+1} \\
& =\frac{n+2+2 F_{n+1}\left(x^{n}-x^{n+1}\right)+F_{n+1} x^{n+1}-1-x^{n} F_{n+1}}{2 x+1} \\
& =\frac{n+2+2 F_{n+1} x^{n}-2 F_{n+1} x^{n+1}+F_{n+1} x^{n+1}-1-x^{n} F_{n+1}}{2 x+1} \\
& =\frac{n+2-\left(x^{n+1} F_{n+1}-F_{n+1} x^{n}+1\right)}{2 x+1} \\
& =\frac{n+2-\left(x^{n+1} F_{n+1}-F_{n+1} x^{n}+x^{n} F_{n+1}+x^{n+1} F_{n}\right)}{2 x+1} \tag{21.1}\\
= & \frac{n+2-\left(x^{n+1} F_{n+1}+x^{n+1} F_{n}\right)}{2 x+1} \\
= & \frac{n+2-x^{n+1}\left(F_{n+1}+F_{n}\right)}{2 x+1} \\
= & n+2-x^{n+1} F_{n+2} \\
& =x+1
\end{align*}
$$

Hence the result in either case.

- 22. [M20] Show that $\sum_{k}\binom{n}{k} F_{m+k}$ is a Fibonacci number.

We have, by the binomial theorem, and since $1+\phi=\phi^{2}$ and $1+\hat{\phi}=\hat{\phi}^{2}$,

$$
\begin{aligned}
\sum_{k}\binom{n}{k} F_{m+k} & =\sum_{k}\binom{n}{k} \frac{1}{\sqrt{5}}\left(\phi^{m+k}-\hat{\phi}^{m+k}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{m} \sum_{k}\binom{n}{k} \phi^{k}-\hat{\phi}^{m} \sum_{k}\binom{n}{k} \hat{\phi}^{k}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{m}(1+\phi)^{n}-\hat{\phi}^{m}(1+\hat{\phi})^{n}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{m}\left(\phi^{2}\right)^{n}-\hat{\phi}^{m}\left(\hat{\phi}^{2}\right)^{n}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{m} \phi^{2 n}-\hat{\phi}^{m} \hat{\phi}^{2 n}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{m+2 n}-\hat{\phi}^{m+2 n}\right) \\
& =F_{m+2 n}
\end{aligned}
$$

23. [M23] Generalizing the preceding exercise, show that $\sum_{k}\binom{n}{k} F_{t}^{k} F_{t-1}^{n-k} F_{m+k}$ is always a Fibonacci number.

First, a corollary.

Proposition. $F_{n} \phi+F_{n-1}=\phi^{n}$ and $F_{n} \hat{\phi}+F_{n-1}=\hat{\phi}^{n}$.
Proof. Let n be an arbitrary, nonnegative integer. We must show that both

$$
\begin{equation*}
F_{n} \phi+F_{n-1}=\phi^{n} \tag{23.1}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{n} \hat{\phi}+F_{n-1}=\hat{\phi}^{n} \tag{23.2}
\end{equation*}
$$

In the case that $n=1$,

$$
F_{1} \phi+F_{1-1}=F_{1} \phi+F_{0}=\phi+0=\phi=\phi^{1} ;
$$

and in the case that $n=2$,

$$
F_{2} \phi+F_{2-1}=F_{2} \phi+F_{1}=\phi+1=\phi^{2}
$$

Then, assuming

$$
F_{n} \phi+F_{n-1}=\phi^{n}
$$

we must show that

$$
F_{n+1} \phi+F_{n}=\phi^{n+1}
$$

But

$$
\begin{aligned}
F_{n+1} \phi+F_{n} & =\left(F_{n}+F_{n-1}\right) \phi+F_{n-1}+F_{n-2} \\
& =F_{n} \phi+F_{n-1}+F_{n-1} \phi+F_{n-2} \\
& =\phi^{n}+\phi^{n-1} \\
& =\phi^{n+1}
\end{aligned}
$$

and hence the result for ϕ. The result for $\hat{\phi}$ follows similarly as $F_{1} \hat{\phi}+F_{1-1}=F_{1} \hat{\phi}+F_{0}=$ $\hat{\phi}+0=\hat{\phi}=\hat{\phi}^{1}, F_{2} \hat{\phi}+F_{2-1}=F_{2} \hat{\phi}+F_{1}=\hat{\phi}+1=\hat{\phi}^{2}$, and $F_{n} \hat{\phi}+F_{n-1}=\hat{\phi}^{n} \Longrightarrow$ $F_{n+1} \hat{\phi}+F_{n}=\hat{\phi}^{n+1}$ since

$$
\begin{aligned}
F_{n+1} \hat{\phi}+F_{n} & =\left(F_{n}+F_{n-1}\right) \hat{\phi}+F_{n-1}+F_{n-2} \\
& =F_{n} \hat{\phi}+F_{n-1}+F_{n-1} \hat{\phi}+F_{n-2} \\
& =\hat{\phi}^{n}+\hat{\phi}^{n-1} \\
& =\hat{\phi}^{n+1}
\end{aligned}
$$

as we needed to show.
Then we have, by the binomial theorem, and by both (23.1) and (23.2),

$$
\begin{aligned}
\sum_{k}\binom{n}{k} F_{t}^{k} F_{t-1}^{n-k} F_{m+k} & =\sum_{k}\binom{n}{k} F_{t}^{k} F_{t-1}^{n-k} \frac{1}{\sqrt{5}}\left(\phi^{m+k}-\hat{\phi}^{m+k}\right) \\
& =\frac{1}{\sqrt{5}} \sum_{k}\binom{n}{k} F_{t}^{k} F_{t-1}^{n-k}\left(\phi^{m} \phi^{k}-\hat{\phi}^{m} \hat{\phi}^{k}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{m} \sum_{k}\binom{n}{k} \phi^{k} F_{t}^{k} F_{t-1}^{n-k}-\hat{\phi}^{m} \sum_{k}\binom{n}{k} \hat{\phi}^{k} F_{t}^{k} F_{t-1}^{n-k}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{m} \sum_{k}\binom{n}{k}\left(\phi F_{t}\right)^{k} F_{t-1}^{n-k}-\hat{\phi}^{m} \sum_{k}\binom{n}{k}\left(\hat{\phi} F_{t}\right)^{k} F_{t-1}^{n-k}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{m}\left(F_{t} \phi+F_{t-1}\right)^{n}-\hat{\phi}^{m}\left(F_{t} \hat{\phi}+F_{t-1}\right)^{n}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{m}\left(\phi^{t}\right)^{n}-\hat{\phi}^{m}\left(\hat{\phi}^{t}\right)^{n}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{m} \phi^{t n}-\hat{\phi}^{m} \hat{\phi}^{t n}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{m+t n}-\hat{\phi}^{m+t n}\right) \\
& =F_{m+t n} .
\end{aligned}
$$

24. [HM20] Evaluate the $n \times n$ determinant

$$
\left(\begin{array}{cccccccc}
1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
1 & 1 & -1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & 1 & -1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 & 1
\end{array}\right)
$$

Given

$$
a_{i j}= \begin{cases}1 & \text { if } i=j \\ 1 & \text { if } i=j+1 \\ -1 & \text { if } j=i+1 \\ 0 & \text { otherwise }\end{cases}
$$

we want to find $\operatorname{det}\left[a_{i j}\right]_{n}$. In the case that $n=1$,

$$
\operatorname{det}\left[a_{i j}\right]_{1}=[1]=1=F_{2}=F_{1+1}
$$

and in the case that $n=2$,

$$
\operatorname{det}\left[a_{i j}\right]_{2}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]=1 \cdot 1-(-1) \cdot 1=1+1=2=F_{3}=F_{2+1}
$$

Then, assuming

$$
\operatorname{det}\left[a_{i j}\right]_{n}=F_{n+1}
$$

we need to show that

$$
\operatorname{det}\left[a_{i j}\right]_{n+1}=F_{n+2}
$$

But

$$
\begin{aligned}
\operatorname{det}\left[a_{i j}\right]_{n+1} & =\sum_{1 \leq j \leq n+1} a_{1 j} \cdot \operatorname{cofactor}\left(a_{1 j}\right) \\
& =a_{11} \cdot \operatorname{cofactor}\left(a_{11}\right)+a_{12} \cdot \operatorname{cofactor}\left(a_{12}\right)+\sum_{3 \leq j \leq n+1} a_{1 j} \cdot \operatorname{cofactor}\left(a_{1 j}\right) \\
& =\operatorname{cofactor}\left(a_{11}\right)-\operatorname{cofactor}\left(a_{12}\right)+0 \\
& =(-1)^{1+1} \operatorname{det} \operatorname{minor}\left([a]_{n+1}, 1,1\right)-(-1)^{1+2} \operatorname{det} \operatorname{minor}\left([a]_{n+1}, 1,2\right) \\
& =\operatorname{det} \operatorname{minor}\left([a]_{n+1}, 1,1\right)+\operatorname{det} \operatorname{minor}\left([a]_{n+1}, 1,2\right)
\end{aligned}
$$

Note that minor $\left([a]_{n+1}, 1,1\right)$ preserves symmetry about the diagonal so that

$$
\begin{equation*}
\operatorname{minor}\left([a]_{n+1}, 1,1\right)=[a]_{n} \tag{24.1}
\end{equation*}
$$

and for

$$
a_{i j}^{\prime}= \begin{cases}a_{i j} & \text { if } i \neq 2 \vee j \neq 1 \\ 0 & \text { otherwise }\end{cases}
$$

that det minor $\left([a]_{n+1}, 1,2\right)$ can be expanded further as

$$
\begin{aligned}
\operatorname{det} \operatorname{minor}\left([a]_{n+1}, 1,2\right) & =\operatorname{det}\left[a^{\prime}\right]_{n} \\
& =\sum_{1 \leq i \leq n} a_{i 1}^{\prime} \cdot \operatorname{cofactor}\left(a_{i 1}^{\prime}\right) \\
& =a_{11}^{\prime} \cdot \operatorname{cofactor}\left(a_{11}^{\prime}\right)+\sum_{2 \leq i \leq n} a_{i 1}^{\prime} \cdot \operatorname{cofactor}\left(a_{i 1}^{\prime}\right) \\
& =a_{11} \cdot \operatorname{cofactor}\left(a_{11}^{\prime}\right)+0 \\
& =\operatorname{cofactor}\left(a_{11}^{\prime}\right) \\
& =(-1)^{1+1} \operatorname{det} \operatorname{minor}\left(\left[a^{\prime}\right]_{n}, 1,1\right) \\
& =\operatorname{det}[a]_{n-1}
\end{aligned}
$$

that is, that

$$
\begin{equation*}
\operatorname{det} \operatorname{minor}\left([a]_{n+1}, 1,2\right)=\operatorname{det}[a]_{n-1} \tag{24.2}
\end{equation*}
$$

And so,

$$
\begin{align*}
\operatorname{det}\left[a_{i j}\right]_{n+1} & =\operatorname{det} \operatorname{minor}\left([a]_{n+1}, 1,1\right)+\operatorname{det} \operatorname{minor}\left([a]_{n+1}, 1,2\right) \\
& =\operatorname{det}[a]_{n}+\operatorname{det} \operatorname{minor}\left([a]_{n+1}, 1,2\right) \tag{24.1}\\
& =\operatorname{det}[a]_{n}+\operatorname{det}[a]_{n-1} \tag{24.2}\\
& =F_{n+1}+F_{n} \\
& =F_{n+2}
\end{align*}
$$

and hence the result,

$$
\operatorname{det}\left[a_{i j}\right]_{n}=F_{n+1}
$$

25. [M21] Show that

$$
2^{n} F_{n}=2 \sum_{k \text { odd }}\binom{n}{k} 5^{(k-1) / 2}
$$

Proposition. $2^{n} F_{n}=2 \sum_{k \text { odd }}\binom{n}{k} 5^{(k-1) / 2}$.
Proof. Let n be an arbitrary, nonnegative integer. We must show that

$$
2^{n} F_{n}=2 \sum_{k \text { odd }}\binom{n}{k} 5^{(k-1) / 2}
$$

But

$$
\begin{aligned}
F_{n} & =\frac{1}{\sqrt{5}}\left(\phi^{n}-\hat{\phi}^{n}\right) \\
& \Longleftrightarrow \quad \sqrt{5} F_{n}=\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n} \\
& \Longleftrightarrow 2^{n} \sqrt{5} F_{n}=(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n} \\
& \Longleftrightarrow 2^{n} F_{n}=\frac{1}{\sqrt{5}}\left((1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
2^{n} F_{n}= & \frac{1}{\sqrt{5}}\left((1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}\right) \\
= & \frac{1}{\sqrt{5}}\left(\sum_{k}\binom{n}{k} 5^{k / 2}-\sum_{k}\binom{n}{k}(-1)^{k} 5^{k / 2}\right) \\
= & \sum_{k}\binom{n}{k} 5^{(k-1) / 2}-\sum_{k}\binom{n}{k}(-1)^{k} 5^{(k-1) / 2} \\
= & \sum_{k \text { even }}\binom{n}{k} 5^{(k-1) / 2}+\sum_{k \text { odd }}\binom{n}{k} 5^{(k-1) / 2} \\
& -\sum_{k \text { even }}\binom{n}{k}(-1)^{k} 5^{(k-1) / 2}-\sum_{k \text { odd }}\binom{n}{k}(-1)^{k} 5^{(k-1) / 2} \\
= & \sum_{k \text { even }}\binom{n}{k} 5^{(k-1) / 2}+\sum_{k \text { odd }}\binom{n}{k} 5^{(k-1) / 2} \\
& -\sum_{k \text { even }}\binom{n}{k} 5^{(k-1) / 2}+\sum_{k \text { odd }}\binom{n}{k} 5^{(k-1) / 2} \\
= & \sum_{k \text { odd }}\binom{n}{k} 5^{(k-1) / 2}+\sum_{k \text { odd }}\binom{n}{k} 5^{(k-1) / 2} \\
= & 2 \sum_{k \text { odd }}\binom{n}{k} 5^{(k-1) / 2}
\end{aligned}
$$

as we needed to show.

- 26. [M20] Using the previous exercise, show that $F_{p} \equiv 5^{(p-1) / 2}$ (modulo p) if p is an odd prime.

Proposition. $F_{p} \equiv 5^{(p-1) / 2}(\bmod p)$ if p is an odd prime.

Proof. Let p be an arbitrary odd prime so that $p>2$. We must show that

$$
F_{p} \equiv 5^{(p-1) / 2} \quad(\bmod p)
$$

By Fermat's theorem, Theorem 1.2.4-F,

$$
2^{p} \equiv 2 \quad(\bmod p) \quad \Longleftrightarrow \quad 1 \equiv 2^{p-1} \quad(\bmod p)
$$

Then, by exercise 25 ,

$$
2^{p} F_{p}=2 \sum_{k \text { odd }}\binom{p}{k} 5^{(k-1) / 2}
$$

And so

$$
\begin{aligned}
2^{p} F_{p} & \equiv 2^{p-1} 2 \sum_{k \text { odd }}\binom{p}{k} 5^{(k-1) / 2} \quad(\bmod p) \\
& \Longleftrightarrow \quad 2^{p} F_{p} \equiv 2^{p} \sum_{k \text { odd }}\binom{p}{k} 5^{(k-1) / 2} \quad(\bmod p) \\
& \Longleftrightarrow \quad F_{p} \equiv \sum_{k \text { odd }}\binom{p}{k} 5^{(k-1) / 2} \quad(\bmod p)
\end{aligned}
$$

Then

$$
\begin{aligned}
F_{p} & \equiv \sum_{k \text { odd }}\binom{p}{k} 5^{(k-1) / 2} \\
& \equiv\binom{p}{p} 5^{(p-1) / 2}+\sum_{\substack{1 \leq k \leq p-1 \\
k \text { odd }}}\binom{p}{k} 5^{(k-1) / 2} \\
& \equiv 5^{(p-1) / 2}+\sum_{\substack{1 \leq k \leq p-1 \\
k \text { odd }}}\binom{p}{k} 5^{(k-1) / 2} \\
& \equiv 5^{(p-1) / 2}+0 \\
& \equiv 5^{(p-1) / 2} \quad(\bmod p)
\end{aligned}
$$

$$
\equiv 5^{(p-1) / 2}+0 \quad \text { by exercise } 1.2 .6-10(\mathrm{~b})
$$

as we needed to show.
27. [M20] Using the previous exercise, show that if p is a prime different from 5, then either F_{p-1} or F_{p+1} (not both) is a multiple of p.

Proposition. If p is a prime different from 5, then either $p \mid F_{p-1}$ or $p \mid F_{p+1}$ (exclusively).
Proof. Let p be an arbitrary prime different from 5 . We must show that

$$
p \mid F_{p-1} \quad \text { or } \quad p \mid F_{p+1}
$$

(exclusively). In the case that $p=2$,

$$
2 \mid F_{2+1} \quad \text { and } \quad 2 \nmid F_{2-1}
$$

since $k 2=F_{2+1}=F_{3}=2$ for $k=1$ but $2>1=F_{1}=F_{2-1}$. Hereafter, we consider the case that p is an odd prime different from 5. By Eq. (4),

$$
\begin{aligned}
& F_{p+1} F_{p-1}-F_{p}^{2}=(-1)^{p} \\
& \quad \Longleftrightarrow \quad F_{p+1} F_{p-1}-F_{p}^{2}=-1 \\
& \quad \Longleftrightarrow \quad F_{p+1} F_{p-1}=F_{p}^{2}-1 \\
& \quad \Longleftrightarrow \quad F_{p+1} F_{p-1} \equiv F_{p}^{2}-1 \quad(\bmod p)
\end{aligned}
$$

From the previous exercise,

$$
\begin{aligned}
F_{p} & \equiv 5^{(p-1) / 2} \quad(\bmod p) \\
& \Longleftrightarrow \quad F_{p}^{2} \equiv 5^{p-1} \quad(\bmod p) \\
& \Longleftrightarrow \quad F_{p}^{2}-1 \equiv 5^{p-1}-1 \quad(\bmod p) ;
\end{aligned}
$$

and by Fermat's theorem, Theorem 1.2.4-F,

$$
\begin{aligned}
5^{p} & \equiv 5 \quad(\bmod p) \\
& \Longleftrightarrow \quad 5^{p-1} \equiv 1 \quad(\bmod p) \\
& \Longleftrightarrow \quad 5^{p-1}-1 \equiv 0 \quad(\bmod p) .
\end{aligned}
$$

And so,

$$
\begin{aligned}
F_{p+1} F_{p-1} & \equiv F_{p}^{2}-1 \\
& \equiv 5^{p-1}-1 \\
& \equiv 0 \quad(\bmod p) .
\end{aligned}
$$

That is, that

$$
p \mid F_{p-1} \quad \text { or } \quad p \mid F_{p+1} .
$$

To see that this is exclusive, consider the case that $p \mid F_{p-1}$. Then $F_{p-1}=m p$ for some m. If we assume $F_{p+1}=n p$ for some n,

$$
F_{p+1}=F_{p}+F_{p-1}=F_{p}+m p=n p
$$

then $p \mid F_{p}$. But by Fermat's theorem, again,

$$
\begin{aligned}
5^{p} & \equiv 5 \quad(\bmod p) \\
& \Longleftrightarrow \quad 5^{p-1} \equiv 1 \quad(\bmod p) \\
& \Longleftrightarrow \quad 5^{(p-1) / 2} \equiv 1 \quad(\bmod p),
\end{aligned}
$$

and from the previous exercise

$$
\begin{aligned}
F_{p} & \equiv 5^{(p-1) / 2} \\
& \equiv 1 \quad(\bmod p),
\end{aligned}
$$

contradicting the assumption $F_{p+1}=n p$, so that $p \nmid F_{p+1}$ if $p \mid F_{p-1}$. Similarly, consider the case that $p \mid F_{p+1}$. Then $F_{p+1}=n p$ for some n. If we assume $F_{p-1}=m p$ for some m,

$$
F_{p-1}=-F_{p}+F_{p+1}=-F_{p}+m p=n p,
$$

then $p \mid F_{p}$. But as with the previous case,

$$
F_{p} \equiv 1 \quad(\bmod p)
$$

contradicting the assumption $F_{p-1}=m p$, so that $p \nmid F_{p-1}$ if $p \mid F_{p+1}$. This is what we needed to show.
28. [M21] What is $F_{n+1}-\phi F_{n}$?

We have

$$
\begin{aligned}
F_{n+1}-\phi F_{n} & =\frac{1}{\sqrt{5}}\left(\phi^{n+1}-\hat{\phi}^{n+1}\right)-\phi \frac{1}{\sqrt{5}}\left(\phi^{n}-\hat{\phi}^{n}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{n+1}-\hat{\phi}^{n+1}-\phi \phi^{n}+\phi \hat{\phi}^{n}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{n+1}-\phi^{n+1}+\hat{\phi}^{n} \phi-\hat{\phi}^{n} \hat{\phi}\right) \\
& =\frac{1}{\sqrt{5}}\left(0+\hat{\phi}^{n}(\phi-\hat{\phi})\right) \\
& =\hat{\phi}^{n} \frac{\phi-\hat{\phi}}{\sqrt{5}} \\
& =\hat{\phi}^{n}\left(\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}\right) \frac{1}{\sqrt{5}} \\
& =\hat{\phi}^{n}\left(\frac{1}{2}+\frac{\sqrt{5}}{2}-\frac{1}{2}+\frac{\sqrt{5}}{2}\right) \frac{1}{\sqrt{5}} \\
& =\hat{\phi}^{n}\left(\frac{\sqrt{5}}{2}+\frac{\sqrt{5}}{2}\right) \frac{1}{\sqrt{5}} \\
& =\hat{\phi}^{n} \frac{2 \sqrt{5}}{2} \frac{1}{\sqrt{5}} \\
& =\hat{\phi}^{n} \frac{\sqrt{5}}{\sqrt{5}} \\
& =\hat{\phi}^{n} .
\end{aligned}
$$

- 29. [M23] (Fibonomial coefficients.) Édouard Lucas defined the quantities

$$
\binom{n}{k}_{\mathcal{F}}=\frac{F_{n} F_{n-1} \ldots F_{n-k+1}}{F_{k} F_{k-1} \ldots F_{1}}=\prod_{j=1}^{k}\left(\frac{F_{n-k+j}}{F_{j}}\right)
$$

in a manner analogous to binomial coefficients. (a) Make a table of $\binom{n}{k}_{\mathcal{F}}$ for $0 \leq k \leq n \leq 6$. (b) Show that $\binom{n}{k}_{\mathcal{F}}$ is always an integer because we have

$$
\binom{n}{k}_{\mathcal{F}}=F_{k-1}\binom{n-1}{k}_{\mathcal{F}}+F_{n-k+1}\binom{n-1}{k-1}_{\mathcal{F}}
$$

a) The table of Fibonomial coefficients $\binom{n}{k}_{\mathcal{F}}$ for $0 \leq k \leq n \leq 6$ would appear as below.

n	$\binom{n}{0}_{\mathcal{F}}$	$\binom{n}{1}_{\mathcal{F}}$	$\binom{n}{2}_{\mathcal{F}}$	$\binom{n}{3}_{\mathcal{F}}$	$\binom{n}{4}_{\mathcal{F}}$	$\binom{n}{5}_{\mathcal{F}}$	$\binom{n}{6}_{\mathcal{F}}$
0	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0
2	1	1	1	0	0	0	0
3	1	2	2	1	0	0	0
4	1	3	6	3	1	0	0
5	1	5	15	15	5	1	0
6	1	8	40	60	40	8	1

This is based on the observations that

$$
\begin{aligned}
\binom{n}{0}_{\mathcal{F}} & =\prod_{1 \leq j \leq 0} \frac{F_{n-0+j}}{F_{j}}=1, \\
\binom{n}{1}_{\mathcal{F}} & =\prod_{1 \leq j \leq 1} \frac{F_{n-1+j}}{F_{j}}=\frac{F_{n}}{F_{1}}=F_{n}, \\
\binom{n}{2}_{\mathcal{F}} & =\prod_{1 \leq j \leq 2} \frac{F_{n-2+j}}{F_{j}}=\frac{F_{n-1}}{F_{1}} \frac{F_{n}}{F_{2}}=F_{n-1} F_{n}, \\
\binom{n}{3}_{\mathcal{F}} & =\prod_{1 \leq j \leq 3} \frac{F_{n-3+j}}{F_{j}}=\frac{F_{n-2}}{F_{1}} \frac{F_{n-1}}{F_{2}} \frac{F_{n}}{F_{3}}=\frac{1}{2} F_{n-2} F_{n-1} F_{n}, \\
\binom{n}{4}_{\mathcal{F}}= & \prod_{1 \leq j \leq 4} \frac{F_{n-4+j}}{F_{j}}=\frac{F_{n-3}}{F_{1}} \frac{F_{n-2}}{F_{2}} \frac{F_{n-1}}{F_{3}} \frac{F_{n}}{F_{4}}=\frac{1}{6} F_{n-3} F_{n-2} F_{n-1} F_{n}, \\
\binom{n}{5}_{\mathcal{F}}= & \prod_{1 \leq j \leq 5} \frac{F_{n-5+j}}{F_{j}}=\frac{F_{n-4}}{F_{1}} \frac{F_{n-3}}{F_{2}} \frac{F_{n-2}}{F_{3}} \frac{F_{n-1}}{F_{4}} \frac{F_{n}}{F_{5}} \\
& =\frac{1}{30} F_{n-4} F_{n-3} F_{n-2} F_{n-1} F_{n}, \text { and } \\
\binom{n}{6}_{\mathcal{F}}= & \prod_{1 \leq j \leq 6} \frac{F_{n-6+j}}{F_{j}}=\frac{F_{n-5}}{F_{1}} \frac{F_{n-4}}{F_{2}} \frac{F_{n-3}}{F_{3}} \frac{F_{n-2}}{F_{4}} \frac{F_{n-1}}{F_{5}} \frac{F_{n}}{F_{6}} \\
& =\frac{1}{240} F_{n-5} F_{n-4} F_{n-3} F_{n-2} F_{n-1} F_{n} .
\end{aligned}
$$

b) We may show that $\binom{n}{k}_{\mathcal{F}}$ is always an integer by proving the recursive relation below.

Proposition. $\binom{n}{k}_{\mathcal{F}}=F_{k-1}\binom{n-1}{k}_{\mathcal{F}}+F_{n-k+1}\binom{n-1}{k-1}_{\mathcal{F}}$.
Proof. We must show that

$$
\binom{n}{k}_{\mathcal{F}}=F_{k-1}\binom{n-1}{k}_{\mathcal{F}}+F_{n-k+1}\binom{n-1}{k-1}_{\mathcal{F}}
$$

for $1 \leq k \leq n$. But

$$
\begin{align*}
& \binom{n}{k}_{\mathcal{F}} \\
& =\prod_{1 \leq j \leq k} \frac{F_{n-k+j}}{F_{j}} \\
& =\frac{F_{k} F_{n-k+1}+F_{k-1} F_{n-k}}{F_{n-k+k}} \prod_{1 \leq j \leq k} \frac{F_{n-k+j}}{F_{j}} \tag{6}\\
& =\frac{F_{n-k} F_{k-1}+F_{n-k+1} F_{k}}{F_{n}} \prod_{1 \leq j \leq k} \frac{F_{n-k+j}}{F_{j}} \\
& =\frac{F_{n-k} F_{k-1}}{F_{n}} \prod_{1 \leq j \leq k} \frac{F_{n-k+j}}{F_{j}}+\frac{F_{n-k+1} F_{k}}{F_{n}} \prod_{1 \leq j \leq k} \frac{F_{n-k+j}}{F_{j}} \\
& =F_{n-k} \frac{F_{k-1}}{F_{n}} \prod_{1 \leq j \leq k} \frac{F_{n-k+j}}{F_{j}}+F_{n-k+1} \frac{F_{k}}{F_{n}} \prod_{1 \leq j \leq k} \frac{F_{n-k+j}}{F_{j}} \\
& =F_{n-k} \frac{F_{k-1}}{F_{n}} \prod_{2 \leq j \leq k+1} \frac{F_{n-k+j-1}}{F_{j-1}}+F_{n-k+1} \prod_{1 \leq j \leq k-1} \frac{F_{n-k+j}}{F_{j}} \\
& =F_{n-k} \frac{F_{k-1}}{F_{n}} \frac{F_{n} \prod_{2 \leq j \leq k} F_{n-k+j-1}}{\prod_{1 \leq j \leq k} F_{j}}+F_{n-k+1} \prod_{1 \leq j \leq k-1} \frac{F_{n-k+j}}{F_{j}} \\
& =F_{n-k} F_{k-1} \frac{\prod_{2 \leq j \leq k} F_{n-k+j-1}}{\prod_{1 \leq j \leq k} F_{j}}+F_{n-k+1} \prod_{1 \leq j \leq k-1} \frac{F_{n-k+j}}{F_{j}} \\
& =F_{k-1} \frac{F_{n-k+1-1} \prod_{2 \leq j \leq k} F_{n-k+j-1}}{\prod_{1 \leq j \leq k} F_{j}}+F_{n-k+1} \prod_{1 \leq j \leq k-1} \frac{F_{n-k+j}}{F_{j}} \\
& =F_{k-1} \frac{\prod_{1 \leq j \leq k} F_{n-k+j-1}}{\prod_{1 \leq j \leq k} F_{j}}+F_{n-k+1} \prod_{1 \leq j \leq k-1} \frac{F_{n-k+j}}{F_{j}} \\
& =F_{k-1} \prod_{1 \leq j \leq k} \frac{F_{n-k+j-1}}{F_{j}}+F_{n-k+1} \prod_{1 \leq j \leq k-1} \frac{F_{n-k+j}}{F_{j}} \\
& =F_{k-1} \prod_{1 \leq j \leq k} \frac{F_{n-1-k+j}}{F_{j}}+F_{n-k+1} \prod_{1 \leq j \leq k-1} \frac{F_{n-1-(k-1)+j}}{F_{j}} \\
& =F_{k-1}\binom{n-1}{k}_{\mathcal{F}}+F_{n-k+1}\binom{n-1}{k-1}_{\mathcal{F}}
\end{align*}
$$

as we needed to show.
[É. Lucas, Amer. J. Math. 1 (1878), 201-204]

- 30. [M38] (D. Jarden, T. Motzkin.) The sequence of m th powers of Fibonacci numbers satisfies a recurrence relation in which each term depends on the preceding $m+1$ terms. Show that

$$
\sum_{k}\binom{m}{k}_{\mathcal{F}}(-1)^{\lceil(m-k) / 2\rceil} F_{n+k}^{m-1}=0, \quad \text { if } m>0
$$

For example, when $m=3$ we get the identity $F_{n}^{2}-2 F_{n+1}^{2}-2 F_{n+2}^{2}+F_{n+3}^{2}=0$.
We may prove the equality as a particular case of the proof outlined by Cooper and Kennedy. ${ }^{1}$

[^0]Proposition. $\sum_{k}\binom{m}{k}_{\mathcal{F}}(-1)^{\lceil(m-k) / 2\rceil} F_{n+k}^{m-1}=0$ if $m>0$.
Proof. Let m, n, k be arbitrary integers such that $m>0$. We must show that

$$
\sum_{k}\binom{m}{k}_{\mathcal{F}}(-1)^{\lceil(m-k) / 2\rceil} F_{n+k}^{m-1}=0
$$

or equivalently for $n^{\prime}=n+m$ that

$$
\begin{aligned}
& \sum_{k}\binom{m}{k}_{\mathcal{F}}(-1)^{\lceil(m-k) / 2\rceil} F_{n+k}^{m-1}=0 \\
& \Longleftrightarrow \sum_{0 \leq k \leq m}\binom{m}{k}_{\mathcal{F}}(-1)^{\lceil(m-k) / 2\rceil} F_{n+k}^{m-1}=0 \\
& \Longleftrightarrow \sum_{0 \leq k \leq m}\binom{m}{m-k}_{\mathcal{F}}(-1)^{\lceil(m-k) / 2\rceil} F_{n^{\prime}-(m-k)}^{m-1}=0 \\
& \Longleftrightarrow \sum_{0 \leq m-k \leq m}\binom{m}{m-k}_{\mathcal{F}}(-1)^{\lceil(m-k) / 2\rceil} F_{n^{\prime}-(m-k)}^{m-1}=0 \\
& \Longleftrightarrow \sum_{0 \leq k \leq m}\binom{m}{k}_{\mathcal{F}}(-1)^{\lceil k / 2\rceil} F_{n^{\prime}-k}^{m-1}=0 .
\end{aligned}
$$

Preliminary result 30.1. From Eq. (14), we have that

$$
\begin{equation*}
F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\hat{\phi}^{n}\right)=\frac{\phi^{n}-\hat{\phi}^{n}}{\phi-\hat{\phi}} \tag{30.1}
\end{equation*}
$$

Preliminary result 30.2. As shown in exercise 14, we may show that

$$
\begin{equation*}
F_{n+1}=\sum_{0 \leq k \leq n}\binom{k}{n-k} \tag{30.2}
\end{equation*}
$$

In the case that $n=0$,

$$
F_{1}=1=1=\binom{0}{0}=\sum_{0 \leq k \leq 0}\binom{k}{0-k}
$$

and in the case that $n=1$,

$$
F_{2}=1=0+1=\binom{0}{1}+\binom{1}{1}=\sum_{0 \leq k \leq 1}\binom{k}{1-k}
$$

Then assuming

$$
F_{n+1}=\sum_{0 \leq k \leq n}\binom{k}{n-k}
$$

we must show

$$
F_{n+2}=\sum_{0 \leq k \leq n+1}\binom{k}{n-k+1}
$$

But

$$
\begin{aligned}
& F_{n+2}=F_{n+1}+F_{n} \\
& =\sum_{0 \leq k \leq n}\binom{k}{n-k}+\sum_{0 \leq k \leq n-1}\binom{k}{n-k-1} \\
& =\binom{n}{0}+\sum_{0 \leq k \leq n-1}\binom{k}{n-k}+\sum_{0 \leq k \leq n-1}\binom{k}{n-k-1} \\
& =1+\sum_{0 \leq k \leq n-1}\left(\binom{k}{n-k}+\binom{k}{n-k-1}\right) \\
& =1+\sum_{0 \leq k \leq n-1}\binom{k+1}{n-k} \\
& =1+\sum_{1 \leq k \leq n}\binom{k}{n-k+1} \\
& =\binom{n+1}{0}+\sum_{1 \leq k \leq n}\binom{k}{n-k+1} \\
& =\binom{n+1}{n-(n+1)+1}+\sum_{1 \leq k \leq n}\binom{k}{n-k+1} \\
& =\sum_{1 \leq k \leq n+1}\binom{k}{n-k+1} \\
& =0+\sum_{1 \leq k \leq n+1}\binom{k}{n-k+1} \\
& =\binom{0}{n-0+1}+\sum_{1 \leq k \leq n+1}\binom{k}{n-k+1} \\
& =\sum_{0 \leq k \leq n+1}\binom{k}{n-k+1}
\end{aligned}
$$

and hence the result.
Preliminary result 30.3. We have that

$$
\begin{equation*}
F_{n}+F_{n-2}=\phi^{n-1}+\hat{\phi}^{n-1} \tag{30.3}
\end{equation*}
$$

since by definition and (30.1)

$$
\begin{aligned}
F_{n}+F_{n-2} & =F_{n}+F_{n}-F_{n-1} \\
& =2 F_{n}-F_{n-1} \\
& =2 \frac{\phi^{n}-\hat{\phi}^{n}}{\phi-\hat{\phi}}-\frac{\phi^{n-1}-\hat{\phi}^{n-1}}{\phi-\hat{\phi}} \\
& =\frac{2 \phi^{n}-2 \hat{\phi}^{n}-\phi^{n-1}+\hat{\phi}^{n-1}}{\phi-\hat{\phi}} \\
& =\frac{2 \phi^{n}-\phi^{n-1}+\hat{\phi}^{n-1}-2 \hat{\phi}^{n}}{\phi-\hat{\phi}} \\
& =\frac{2 \phi \phi^{n-1}-\phi^{n-1}+\hat{\phi}^{n-1}-2 \hat{\phi} \hat{\phi}^{n-1}}{\phi-\hat{\phi}} \\
& =\frac{(2 \phi-1) \phi^{n-1}+(1-2 \hat{\phi}) \hat{\phi}^{n-1}}{\phi-\hat{\phi}} \\
& =\frac{(2 \phi-1) \phi^{n-1}+(2 \phi-1) \hat{\phi}^{n-1}}{\phi-\hat{\phi}} \\
& =\frac{(2 \phi-1)\left(\phi^{n-1}+\hat{\phi}^{n-1}\right)}{\phi-\hat{\phi}} \\
& =\frac{(\phi-\hat{\phi})\left(\phi^{n-1}+\hat{\phi}^{n-1}\right)}{\phi-\hat{\phi}} \\
& =\phi^{n-1}+\hat{\phi}^{n-1} .
\end{aligned}
$$

Preliminary result 30.4. We have that

$$
\begin{equation*}
F_{n} F_{n-2}-F_{n-1}^{2}=\phi^{n-1} \hat{\phi}^{n-1} \tag{30.4}
\end{equation*}
$$

since by definition and (30.1)

$$
\begin{aligned}
F_{n} F_{n-2}-F_{n-1}^{2} & =F_{n}\left(F_{n}-F_{n-1}\right)-F_{n-1}^{2} \\
& =F_{n}^{2}-F_{n} F_{n-1}-F_{n-1}^{2} \\
& =F_{n}^{2}-F_{n-1}\left(F_{n}+F_{n-1}\right) \\
& =F_{n}^{2}-F_{n-1} F_{n+1} \\
& =\left(\frac{\phi^{n}-\hat{\phi}^{n}}{\phi-\hat{\phi}}\right)^{2}-\frac{\phi^{n-1}-\hat{\phi}^{n-1}}{\phi-\hat{\phi}} \frac{\phi^{n+1}-\hat{\phi}^{n+1}}{\phi-\hat{\phi}} \\
& =\frac{\phi^{2 n}-2 \phi^{n} \hat{\phi}^{n}+\hat{\phi}^{2 n}-\phi^{2 n}+\phi^{n+1} \hat{\phi}^{n-1}+\phi^{n-1} \hat{\phi}^{n+1}-\hat{\phi}^{2 n}}{(\phi-\hat{\phi})^{2}} \\
& =\frac{\phi^{n+1} \hat{\phi}^{n-1}-2 \phi^{n} \hat{\phi}^{n}+\phi^{n-1} \hat{\phi}^{n+1}}{(\phi-\hat{\phi})^{2}} \\
& =\frac{\left(\phi^{n-1} \hat{\phi}^{n-1}\right)\left(\phi^{2}-2 \phi \hat{\phi}+\hat{\phi}^{2}\right)}{(\phi-\hat{\phi})^{2}} \\
& =\frac{\left(\phi^{n-1} \hat{\phi}^{n-1}\right)(\phi-\hat{\phi})^{2}}{(\phi-\hat{\phi})^{2}} \\
& =\phi^{n-1} \hat{\phi}^{n-1} .
\end{aligned}
$$

Preliminary result 30.5. We may show that

$$
\begin{equation*}
\left(F_{k} x+F_{k-1}\right)^{r}\left(F_{k+1} x+F_{k}\right)^{n-r}=\sum_{s_{1}, \cdots, s_{k}}\binom{n-r}{s_{1}}\binom{n-s_{1}}{s_{2}} \cdots\binom{n-s_{k-1}}{s_{k}} x^{n-s_{k}} \tag{30.5}
\end{equation*}
$$

for $0 \leq r \leq n$. In the case that $k=1$,

$$
\begin{aligned}
& \left(F_{1} x+F_{1-1}\right)^{r}\left(F_{1+1} x+F_{1}\right)^{n-r} \\
& \quad=x^{r}(x+1)^{n-r} \\
& \quad=x^{r}(1+x)^{n-r} \\
& =x^{r} \sum_{0 \leq s_{1} \leq n-r}\binom{n-r}{s_{1}} x^{s_{1}} \\
& \quad=\sum_{0 \leq n-r-s_{1} \leq n-r}\binom{n-r}{n-r-s_{1}} x^{n-r-s_{1}} x^{r} \\
& =\sum_{0 \leq s_{1} \leq n-r}\binom{n-r}{s_{1}} x^{n-s_{1}} \\
& = \\
& \sum_{s_{1}}\binom{n-r}{s_{1}} x^{n-s_{1}} .
\end{aligned}
$$

Then, assuming

$$
\begin{aligned}
& \left(F_{k} x+F_{k-1}\right)^{r}\left(F_{k+1} x+F_{k}\right)^{n-r} \\
& \quad=\sum_{s_{1}, \cdots, s_{k}}\binom{n-r}{s_{1}}\binom{n-s_{1}}{s_{2}} \cdots\binom{n-s_{k-1}}{s_{k}} x^{n-s_{k}}
\end{aligned}
$$

we must show that

$$
\begin{aligned}
& \left(F_{k+1} x+F_{k}\right)^{r}\left(F_{k+2} x+F_{k+1}\right)^{n-r} \\
& \quad=\sum_{s_{1}, \cdots, s_{k+1}}\binom{n-r}{s_{1}}\binom{n-s_{1}}{s_{2}} \cdots\binom{n-s_{k}}{s_{k+1}} x^{n-s_{k+1}}
\end{aligned}
$$

But for $x^{\prime}=1+x^{-1}$,

$$
\begin{aligned}
&\left(F_{k+1} x+F_{k}\right)^{r}\left(F_{k+2} x+F_{k+1}\right)^{n-r} \\
& \quad=x^{r}\left(F_{k+1}+F_{k} x^{-1}\right)^{r} x^{n-r}\left(F_{k+2}+F_{k+1} x^{-1}\right)^{n-r} \\
& \quad=x^{n}\left(F_{k}+F_{k-1}+F_{k} x^{-1}\right)^{r}\left(F_{k+1}+F_{k}+F_{k+1} x^{-1}\right)^{n-r} \\
&=x^{n}\left(F_{k}+F_{k} x^{-1}+F_{k-1}\right)^{r}\left(F_{k+1}+F_{k+1} x^{-1}+F_{k}\right)^{n-r} \\
&=x^{n}\left(F_{k}\left(1+x^{-1}\right)+F_{k-1}\right)^{r}\left(F_{k+1}\left(1+x^{-1}\right)+F_{k}\right)^{n-r} \\
&=x^{n}\left(F_{k} x^{\prime}+F_{k-1}\right)^{r}\left(F_{k+1} x^{\prime}+F_{k}\right)^{n-r} \\
&=x^{n} \sum_{s_{1}, \cdots, s_{k}}\binom{n-r}{s_{1}}\binom{n-s_{1}}{s_{2}} \cdots\binom{n-s_{k-1}}{s_{k}} x^{\prime n-s_{k}} \\
&=\sum_{s_{1}, \cdots, s_{k}}\binom{n-r}{s_{1}}\binom{n-s_{1}}{s_{2}} \cdots\binom{n-s_{k-1}}{s_{k}}\left(1+x^{-1}\right)^{n-s_{k}} x^{n} \\
&=\sum_{s_{1}, \cdots, s_{k}}\binom{n-r}{s_{1}}\binom{n-s_{1}}{s_{2}} \cdots\binom{n-s_{k-1}}{s_{k}}(x+1)^{n-s_{k}} x^{s_{k}} \\
&=\sum_{s_{1}, \cdots, s_{k}}\binom{n-r}{s_{1}}\binom{n-s_{1}}{s_{2}} \cdots\binom{n-s_{k-1}}{s_{k}} \sum_{s_{k+1}}\binom{n-s_{k}}{s_{k+1}} x^{n-s_{k}-s_{k+1}} x^{s_{k}} \\
&=\sum_{s_{1}, \cdots, s_{k+1}}\binom{n-r}{s_{1}}\binom{n-s_{1}}{s_{2}} \cdots\binom{n-s_{k}}{s_{k+1}} x^{n-s_{k+1}}
\end{aligned}
$$

and hence the result.
Preliminary Result 30.6. From Eq. (1.2.6-19), we have that

$$
\begin{equation*}
\binom{n}{k}=(-1)^{n-k}\binom{-k-1}{n-k} \tag{30.6}
\end{equation*}
$$

Preliminary Result 30.7. Define

$$
\mathbf{A}_{n+1}=\left[a_{i j}\right]_{n+1}=\left[\binom{i}{n-j}\right]_{n+1}=\left[\begin{array}{cccc}
\binom{0}{n} & \binom{0}{n-1} & \cdots & \left(\begin{array}{c}
0 \\
0 \\
1
\end{array}\right) \\
n
\end{array}\right)\binom{1}{n-1} ~ \cdots ~\binom{1}{0}
$$

Then

$$
\begin{equation*}
\operatorname{tr}\left(\mathbf{A}_{n+1}^{k}\right)=\frac{F_{k n+k}}{F_{k}} \tag{30.7}
\end{equation*}
$$

for $k>0$, where $\operatorname{tr}\left(\mathbf{B}_{n+1}\right)$ is the trace of \mathbf{B}_{n+1} defined as

$$
\operatorname{tr}\left(\mathbf{B}_{n+1}\right)=\sum_{0 \leq i \leq n} b_{i j}
$$

Note that the case $k=1$ is (30.2). But by (30.5),

$$
\begin{aligned}
\left(F_{k} x\right. & \left.+F_{k-1}\right)^{r}\left(F_{k+1} x+F_{k}\right)^{n-r} \\
& =\sum_{s_{1}, \cdots, s_{k}}\binom{n-r}{s_{1}}\binom{n-s_{1}}{s_{2}} \cdots\binom{n-s_{k-1}}{s_{k}} x^{n-s_{k}} \\
& \Longleftrightarrow\left(F_{k} x+F_{k-1}\right)^{r}\left(F_{k+1} x+F_{k}\right)^{n-r} x^{r} \\
& =\sum_{s_{1}, \cdots, s_{k}}\binom{n-r}{s_{1}}\binom{n-s_{1}}{s_{2}} \cdots\binom{n-s_{k-1}}{s_{k}} x^{n+r-s_{k}} \\
& \Longleftrightarrow \sum_{0 \leq r \leq n}\left(F_{k} x+F_{k-1}\right)^{r}\left(F_{k+1} x+F_{k}\right)^{n-r} x^{r} \\
& =\sum_{0 \leq r \leq n} \sum_{s_{1}, \cdots, s_{k}}\binom{n-r}{s_{1}}\binom{n-s_{1}}{s_{2}} \cdots\binom{n-s_{k-1}}{s_{k}} x^{n+r-s_{k}} \\
& \Longleftrightarrow \sum_{n \geq 0} \sum_{0 \leq r \leq n}\left(F_{k} x+F_{k-1}\right)^{r}\left(F_{k+1} x+F_{k}\right)^{n-r} x^{r} \\
& =\sum_{n \geq 0} \sum_{0 \leq r \leq n} \sum_{s_{1}, \cdots, s_{k}}\binom{n-r}{s_{1}}\binom{n-s_{1}}{s_{2}} \cdots\binom{n-s_{k-1}}{s_{k}} x^{r-s_{k}} x^{n}
\end{aligned}
$$

and since

$$
\begin{aligned}
\operatorname{tr}\left(\mathbf{A}_{n+1}^{k}\right) & =\sum_{0 \leq i \leq n} \sum_{\substack{s_{1}, s_{2}, \cdots, s_{k} \\
i=s_{1}=s_{2}=\cdots=s_{k}}}\binom{i}{n-s_{1}}\binom{s_{1}}{n-s_{2}} \cdots\binom{s_{k-1}}{n-s_{k}} \\
& =\sum_{0 \leq n-i \leq n} \sum_{\substack{n-s_{1}, n-s_{2}, \cdots, n-s_{k} \\
n-i=n-s_{1}=n-s_{2}=\cdots=n-s_{k}}}\binom{i}{n-s_{1}}\binom{s_{1}}{n-s_{2}} \cdots\binom{s_{k-1}}{n-s_{k}} \\
& =\sum_{0 \leq r \leq n} \sum_{\substack{s_{1}, s_{2}, \cdots, s_{k} \\
i=s_{1}=s_{2}=\cdots=s_{k}}}\binom{n-r}{s_{1}}\binom{n-s_{1}}{s_{2}} \cdots\binom{n-s_{k-1}}{s_{k}} \\
& =\sum_{0 \leq r \leq n} \sum_{\substack{s_{1}, s_{2}, \cdots, s_{k} \\
i=s_{1}=s_{2}=\cdots=s_{k}}}\binom{n-r}{s_{1}}\binom{n-s_{1}}{s_{2}} \cdots\binom{n-s_{k-1}}{s_{k}} x^{0} \\
& =\sum_{0 \leq r \leq n} \sum_{\substack{s_{1}, s_{2}, \cdots, s_{k} \\
i=s_{1}=s_{2}=\cdots=s_{k}}}\binom{n-r}{s_{1}}\binom{n-s_{1}}{s_{2}} \cdots\binom{n-s_{k-1}}{s_{k}} x^{r-s_{k}}
\end{aligned}
$$

we have that

$$
\begin{aligned}
& \sum_{n \geq 0} \sum_{0 \leq r \leq n} \sum_{s_{1}, \cdots, s_{k}}\binom{n-r}{s_{1}}\binom{n-s_{1}}{s_{2}} \cdots\binom{n-s_{k-1}}{s_{k}} x^{r-s_{k}} x^{n} \\
& \quad=\sum_{n \geq 0} \operatorname{tr}\left(\mathbf{A}_{n+1}^{k}\right) x^{n} \\
& \quad=\sum_{n \geq 0} \sum_{0 \leq r \leq n}\left(F_{k} x+F_{k-1}\right)^{r}\left(F_{k+1} x+F_{k}\right)^{n-r} x^{r}
\end{aligned}
$$

But

$$
\begin{aligned}
& \sum_{0 \leq r \leq n}\left(F_{k} x+F_{k-1}\right)^{r}\left(F_{k+1} x+F_{k}\right)^{n-r} x^{r} \\
& =\sum_{0 \leq r \leq n} \sum_{0 \leq s \leq r}\binom{r}{s}\left(F_{k} x\right)^{s} F_{k-1}^{r-s} \sum_{0 \leq t \leq n-r}\binom{n-r}{t}\left(F_{k+1} x\right)^{t} F_{k}^{n-r-t} x^{r} \\
& =\sum_{0 \leq r \leq n} \sum_{0 \leq s \leq r} \sum_{0 \leq t \leq n-r}\binom{r}{s}\binom{n-r}{t} F_{k+1}^{t} F_{k}^{s} F_{k}^{n-r-t} F_{k-1}^{r-s} x^{s} x^{t} x^{r} \\
& =\sum_{0 \leq r \leq n} \sum_{0 \leq s \leq r} \sum_{0 \leq t \leq n-r}\binom{r}{s}\binom{n-r}{t} F_{k+1}^{t} F_{k}^{n-r+s-t} F_{k-1}^{r-s} x^{r+s+t} \\
& =\sum_{n=r+s+t}\binom{r}{s}\binom{n-r}{t} F_{k+1}^{t} F_{k}^{n-r+s-t} F_{k-1}^{r-s} x^{n} \\
& =\sum_{n=r+s+t}\binom{r}{s}\binom{n-r}{n-r-s} F_{k+1}^{n-r-s} F_{k}^{2 s} F_{k-1}^{r-s} x^{n} \\
& =\sum_{n \geq r+s}\binom{r}{s}\binom{n-r}{s} F_{k+1}^{n-r-s} F_{k}^{2 s} F_{k-1}^{r-s} x^{n} \\
& =\sum_{r, s \geq 0}\binom{r}{s} F_{k-1}^{r-s} F_{k}^{2 s} x^{r+s} \sum_{n \geq r+s}\binom{n-r}{s}\left(F_{k+1} x\right)^{n-r-s} \\
& =\sum_{r, s \geq 0}\binom{r}{s} F_{k-1}^{r-s} F_{k}^{2 s} x^{r+s} \sum_{n \geq r+s}\binom{n-r}{s} F_{k+1}^{n-r-s} x^{n-r-s} \\
& =\sum_{r, s \geq 0}\binom{r}{s} F_{k-1}^{r-s} F_{k}^{2 s} x^{r+s} \sum_{s \leq n-r}(-1)^{n-r-s}\binom{-s-1}{n-r-s}\left(F_{k+1} x\right)^{n-r-s} \quad \text { by (30.6) } \\
& =\sum_{r, s \geq 0}\binom{r}{s} F_{k-1}^{r-s} F_{k}^{2 s} x^{r+s} \sum_{0 \leq n-r-s}\binom{-s-1}{n-r-s}\left(-F_{k+1} x\right)^{n-r-s} \\
& =\sum_{r, s \geq 0}\binom{r}{s} F_{k-1}^{r-s} F_{k}^{2 s} x^{r+s}\left(1-F_{k+1} x\right)^{-s-1} \\
& =\sum_{s \geq 0} F_{k}^{2 s} x^{2 s}\left(1-F_{k+1} x\right)^{-s-1} \sum_{r \geq 0}\binom{r}{s} F_{k-1}^{r-s} x^{r-s} \\
& =\sum_{s \geq 0} F_{k}^{2 s} x^{2 s}\left(1-F_{k+1} x\right)^{-s-1} \sum_{s \leq r}\binom{r}{s} F_{k-1}^{r-s} x^{r-s} \\
& =\sum_{s \geq 0} F_{k}^{2 s} x^{2 s}\left(1-F_{k+1} x\right)^{-s-1} \sum_{s \leq r}\binom{r}{s}\left(F_{k-1} x\right)^{r-s} \\
& =\sum_{s \geq 0} F_{k}^{2 s} x^{2 s}\left(1-F_{k+1} x\right)^{-s-1} \sum_{s \leq r}(-1)^{r-s}\binom{-s-1}{r-s}\left(F_{k-1} x\right)^{r-s} \quad \text { by }(30.6) \\
& =\sum_{s \geq 0} F_{k}^{2 s} x^{2 s}\left(1-F_{k+1} x\right)^{-s-1} \sum_{0 \leq r-s}\binom{-s-1}{r-s}\left(-F_{k-1} x\right)^{r-s} \\
& =\sum_{s \geq 0} F_{k}^{2 s} x^{2 s}\left(1-F_{k+1} x\right)^{-s-1}\left(1-F_{k-1} x\right)^{-s-1} \\
& =\frac{1}{\left(1-F_{k+1} x\right)\left(1-F_{k-1} x\right)} \sum_{s \geq 0}\left(\frac{F_{k}^{2} x^{2}}{\left(1-F_{k+1} x\right)\left(1-F_{k-1} x\right)}\right)^{s} .
\end{aligned}
$$

Then

$$
\begin{align*}
& \frac{1}{\left(1-F_{k+1} x\right)\left(1-F_{k-1} x\right)} \sum_{s \geq 0}\left(\frac{F_{k}^{2} x^{2}}{\left(1-F_{k+1} x\right)\left(1-F_{k-1} x\right)}\right)^{s} \\
& =\frac{1}{\left(1-F_{k+1} x\right)\left(1-F_{k-1} x\right)} \frac{1}{1-\frac{F_{k}^{2} x^{2}}{\left(1-F_{k+1} x\right)\left(1-F_{k-1} x\right)}} \\
& =\frac{1}{\left(1-F_{k+1} x\right)\left(1-F_{k-1} x\right)} \frac{\left(1-F_{k+1} x\right)\left(1-F_{k-1} x\right)}{\left(1-F_{k+1} x\right)\left(1-F_{k-1} x\right)-F_{k}^{2} x^{2}} \\
& =\frac{1}{\left(1-F_{k+1} x\right)\left(1-F_{k-1} x\right)-F_{k}^{2} x^{2}} \\
& =\frac{1}{1-F_{k+1} x-F_{k-1} x+F_{k+1} F_{k-1} x^{2}-F_{k}^{2} x^{2}} \\
& =\frac{1}{1-\left(F_{k+1}+F_{k-1}\right) x+\left(F_{k+1} F_{k-1}-F_{k}^{2}\right) x^{2}} \\
& =\frac{1}{1-\left(\phi^{k}+\hat{\phi}^{k}\right) x+\left(F_{k+1} F_{k-1}-F_{k}^{2}\right) x^{2}} \tag{30.3}\\
& =\frac{1}{1-\left(\phi^{k}+\hat{\phi}^{k}\right) x+\phi^{k} \hat{\phi}^{k} x^{2}} \tag{30.4}\\
& =\frac{1}{1-\phi^{k} x-\hat{\phi}^{k} x+\phi^{k} \hat{\phi}^{k} x^{2}} \\
& =\frac{1}{\phi^{k}-\hat{\phi}^{k}} \frac{\phi^{k}\left(1-\hat{\phi}^{k} x\right)-\hat{\phi}^{k}\left(1-\phi^{k} x\right)}{\left(1-\phi^{k} x\right)\left(1-\hat{\phi}^{k} x\right)} \\
& =\frac{1}{\phi^{k}-\hat{\phi}^{k}}\left(\frac{\phi^{k}}{1-\phi^{k} x}-\frac{\hat{\phi}^{k}}{1-\hat{\phi}^{k} x}\right) \\
& =\frac{1}{\phi^{k}-\hat{\phi}^{k}}\left(\phi^{k} \frac{1}{1-\phi^{k} x}-\hat{\phi}^{k} \frac{1}{1-\hat{\phi}^{k} x}\right) \\
& =\frac{1}{\phi^{k}-\hat{\phi}^{k}}\left(\phi^{k} \sum_{n \geq 0}\left(\phi^{k} x\right)^{n}-\hat{\phi}^{k} \sum_{n \geq 0}\left(\hat{\phi}^{k} x\right)^{n}\right) \\
& =\frac{1}{\phi^{k}-\hat{\phi}^{k}}\left(\phi^{k} \sum_{n \geq 0}\left(\phi^{k}\right)^{n} x^{n}-\hat{\phi}^{k} \sum_{n \geq 0}\left(\hat{\phi}^{k}\right)^{n} x^{n}\right) \\
& =\frac{1}{\phi^{k}-\hat{\phi}^{k}}\left(\sum_{n \geq 0} \phi^{k n+k} x^{n}-\sum_{n \geq 0} \hat{\phi}^{k n+k} x^{n}\right) \\
& =\frac{1}{\phi^{k}-\hat{\phi}^{k}} \sum_{n \geq 0}\left(\phi^{k n+k}-\hat{\phi}^{k n+k}\right) x^{n} \\
& =\sum_{n \geq 0} \frac{\phi^{k n+k}-\hat{\phi}^{k n+k}}{\phi^{k}-\hat{\phi}^{k}} x^{n} \\
& =\sum_{n \geq 0} \frac{\phi^{k n+k}-\hat{\phi}^{k n+k}}{\phi-\hat{\phi}} \frac{\phi-\hat{\phi}}{\phi^{k}-\hat{\phi}^{k}} x^{n} \\
& =\sum_{n \geq 0} \frac{F_{k n+k}}{F_{k}} x^{n} \text {. }
\end{align*}
$$

And so,

$$
\sum_{n \geq 0} \operatorname{tr}\left(\mathbf{A}_{n+1}^{k}\right) x^{n}=\sum_{n \geq 0} \frac{F_{k n+k}}{F_{k}} x^{n}
$$

hence the result.
Preliminary Result 30.8. We may show that the eigenvalues of \mathbf{A}_{n+1} are

$$
\begin{equation*}
\lambda_{j}=\phi^{j} \hat{\phi}^{n-j} \tag{30.8}
\end{equation*}
$$

for $0 \leq j \leq n$. Let

$$
p_{\mathbf{A}_{n+1}}(x)=\operatorname{det}\left(x \mathbf{I}_{n+1}-\mathbf{A}_{n+1}\right)
$$

be the characteristic polynomial of \mathbf{A}_{n+1}, where \mathbf{I}_{n+1} is the $(n+1) \times(n+1)$ identity
matrix. Using partial fraction decomposition we find that

$$
\begin{align*}
& \frac{p_{\mathbf{A}_{n+1}}^{\prime}(x)}{p_{\mathbf{A}_{n+1}}(x)}=\sum_{0 \leq j \leq n} \frac{p_{\mathbf{A}_{n+1}}^{\prime}\left(\lambda_{j}\right)}{p_{\mathbf{A}_{n+1}}^{\prime}\left(\lambda_{j}\right)} \frac{1}{x-\lambda_{j}} \\
& =\sum_{0 \leq j \leq n} \frac{1}{x-\lambda_{j}} \\
& =\sum_{0 \leq j \leq n} \frac{1}{x} \frac{x}{x-\lambda_{j}} \\
& =\sum_{0 \leq j \leq n} \frac{1 / x}{1-\lambda_{j} / x} \\
& =\sum_{0 \leq j \leq n} \sum_{k \geq 0} \frac{1}{x}\left(\frac{\lambda_{j}}{x}\right)^{k} \\
& =\sum_{0 \leq j \leq n} \sum_{k \geq 0} \frac{\lambda_{j}^{k}}{x^{k+1}} \\
& =\sum_{0 \leq j \leq n} \sum_{k \geq 0} \lambda_{j}^{k} x^{-k-1} \\
& =\sum_{k \geq 0} x^{-k-1} \sum_{0 \leq j \leq n} \lambda_{j}^{k} \\
& =\sum_{k \geq 0} x^{-k-1} \operatorname{tr}\left(\mathbf{A}_{n+1}^{k}\right) \\
& =\sum_{k \geq 0} x^{-k-1} \frac{F_{k n+k}}{F_{k}} \tag{30.7}\\
& =\sum_{k \geq 0} x^{-k-1} \frac{\phi^{k n+k}-\hat{\phi}^{k n+k}}{\phi-\hat{\phi}} \frac{\phi-\hat{\phi}}{\phi^{k}-\hat{\phi}^{k}} \tag{30.1}\\
& =\sum_{k \geq 0} x^{-k-1} \frac{\phi^{k n+k}-\hat{\phi}^{k n+k}}{\phi^{k}-\hat{\phi}^{k}} \\
& =\sum_{k \geq 0} x^{-k-1}\left(\hat{\phi}^{k}\right)^{n} \frac{1-\left(\phi^{k} / \hat{\phi}^{k}\right)^{n+1}}{1-\phi^{k} / \hat{\phi}^{k}} \\
& =\sum_{k \geq 0} x^{-k-1} \sum_{0 \leq j \leq n}\left(\hat{\phi}^{k}\right)^{n}\left(\frac{\phi^{k}}{\hat{\phi}^{k}}\right)^{j} \\
& =\sum_{k \geq 0} x^{-k-1} \sum_{0 \leq j \leq n} \phi^{j k} \hat{\phi}^{(n-j) k} \\
& =\sum_{0 \leq j \leq n} \sum_{k \geq 0} \frac{1}{x}\left(\frac{\phi^{j} \hat{\phi}^{n-j}}{x}\right)^{k} \\
& =\sum_{0 \leq j \leq n} \frac{1}{x} \frac{1}{1-\phi^{j} \hat{\phi}^{n-j} / x} \\
& =\sum_{0 \leq j \leq n} \frac{1}{x-\phi^{j} \hat{\phi}^{n-j}}
\end{align*}
$$

so that

$$
\begin{aligned}
& \sum_{0 \leq j \leq n} \frac{1}{x-\lambda_{j}}=\sum_{0 \leq j \leq n} \frac{1}{x-\phi^{j} \hat{\phi}^{n-j}} \\
& \quad \Longleftrightarrow \quad \lambda_{j}=\phi^{j} \hat{\phi}^{n-j}
\end{aligned}
$$

and

$$
p_{\mathbf{A}_{n+1}}(x)=\prod_{0 \leq j \leq n}\left(x-\lambda_{j}\right)=\prod_{0 \leq j \leq n}\left(x-\phi^{j} \hat{\phi}^{n-j}\right)
$$

hence the result.
Preliminary Result 30.9. We may show that

$$
\begin{equation*}
(-1)^{k(k+1) / 2}=(-1)^{\lceil k / 2\rceil} \tag{30.9}
\end{equation*}
$$

In the case that $k=2 m$ even and m even,

$$
\begin{aligned}
(-1)^{k(k+1) / 2} & =(-1)^{2 m(2 m+1) / 2} \\
& =(-1)^{m(2 m+1)} \\
& =1 \\
& =(-1)^{m} \\
& =(-1)^{\lceil m\rceil} \\
& =(-1)^{\lceil 2 m / 2\rceil} \\
& =(-1)^{\lceil k / 2\rceil}
\end{aligned}
$$

that $k=2 m$ even and m odd,

$$
\begin{aligned}
(-1)^{k(k+1) / 2} & =(-1)^{2 m(2 m+1) / 2} \\
& =(-1)^{m(2 m+1)} \\
& =-1 \\
& =(-1)^{m} \\
& =(-1)^{\lceil m\rceil} \\
& =(-1)^{\lceil 2 m / 2\rceil} \\
& =(-1)^{\lceil k / 2\rceil}
\end{aligned}
$$

that $k=2 m+1$ odd and m even,

$$
\begin{aligned}
(-1)^{k(k+1) / 2} & =(-1)^{(2 m+1)(2 m+2) / 2} \\
& =(-1)^{(2 m+1)(m+1)} \\
& =-1 \\
& =(-1)^{m+1} \\
& =(-1)^{\lceil m+1 / 2\rceil} \\
& =(-1)^{\lceil(2 m+1) / 2\rceil} \\
& =(-1)^{\lceil k / 2\rceil}
\end{aligned}
$$

and that $k=2 m+1$ odd and m odd,

$$
\begin{aligned}
(-1)^{k(k+1) / 2} & =(-1)^{(2 m+1)(2 m+2) / 2} \\
& =(-1)^{(2 m+1)(m+1)} \\
& =1 \\
& =(-1)^{m+1} \\
& =(-1)^{\lceil m+1 / 2\rceil} \\
& =(-1)^{\lceil(2 m+1) / 2\rceil} \\
& =(-1)^{\lceil k / 2\rceil} ;
\end{aligned}
$$

hence the result.
Preliminary Result 30.10. We may show that

$$
\begin{equation*}
\prod_{0 \leq j \leq n}\left(x-\phi^{j} \hat{\phi}^{n-j}\right)=\sum_{0 \leq k \leq n+1}(-1)^{\lceil k / 2\rceil}\binom{n+1}{k}_{\mathcal{F}} x^{n+1-k} \tag{30.10}
\end{equation*}
$$

By the q-nomial theorem ${ }^{2}$,

$$
\prod_{0 \leq k \leq n-1}\left(1-q^{k} x\right)=\sum_{0 \leq k \leq n}(-1)^{k}\binom{n}{k}_{q} q^{k(k-1) / 2} x^{k}
$$

where

$$
\binom{n}{k}_{q}=\prod_{1 \leq j \leq k} \frac{1-q^{n-k+j}}{1-q^{j}}
$$

[^1]for $q=\hat{\phi} / \phi$,
\[

$$
\begin{align*}
& \binom{n}{k}_{\hat{\phi} / \phi}=\prod_{1 \leq j \leq k} \frac{1-(\hat{\phi} / \phi)^{n-k+j}}{1-(\hat{\phi} / \phi)^{j}} \\
& =\prod_{1 \leq j \leq k} \frac{\left(\phi^{n-k+j}-\hat{\phi}^{n-k+j}\right) \phi^{j}}{\left(\phi^{j}-\hat{\phi}^{j}\right) \phi^{n-k+j}} \\
& =\prod_{1 \leq j \leq k} \frac{\phi^{j}-\hat{\phi}^{n-k+j} \phi^{k-n}}{\phi^{j}-\hat{\phi}^{j}} \\
& =\prod_{1 \leq j \leq k} \frac{\phi^{j}-\hat{\phi}^{n-k+j} \hat{\phi}^{n-k}}{\phi^{j}-\hat{\phi}^{j}} \\
& =\prod_{1 \leq j \leq k} \frac{\phi^{j}-\hat{\phi}^{2 n-2 k+j}}{\phi^{j}-\hat{\phi}^{j}} \\
& =\prod_{1 \leq j \leq k} \frac{\phi^{j}-\hat{\phi}^{n-k} \hat{\phi}^{n-k+j}}{\phi^{j}-\hat{\phi}^{j}} \\
& =\prod_{1 \leq j \leq k} \frac{\phi^{k-n} \phi^{n-k+j}-\phi^{k-n} \hat{\phi}^{n-k+j}}{\phi^{j}-\hat{\phi}^{j}} \\
& =\prod_{1 \leq j \leq k} \frac{\phi^{k-n}\left(\phi^{n-k+j}-\hat{\phi}^{n-k+j}\right)}{\phi^{j}-\hat{\phi}^{j}} \\
& =\left(\phi^{k-n}\right)^{k} \prod_{1 \leq j \leq k} \frac{\phi^{n-k+j}-\hat{\phi}^{n-k+j}}{\phi^{j}-\hat{\phi}^{j}} \\
& =\phi^{k^{2}-n k} \prod_{1 \leq j \leq k} \frac{\phi^{n-k+j}-\hat{\phi}^{n-k+j}}{\phi^{j}-\hat{\phi}^{j}} \\
& =\phi^{k^{2}-n k} \prod_{1 \leq j \leq k} \frac{\phi^{n-k+j}-\hat{\phi}^{n-k+j}}{\phi-\hat{\phi}} \frac{\phi-\hat{\phi}}{\phi^{j}-\hat{\phi}^{j}} \\
& =\phi^{k^{2}-n k} \prod_{1 \leq j \leq k} \frac{F_{n-k+j}}{F_{j}} \tag{30.1}\\
& =\phi^{k^{2}-n k}\binom{n}{k}_{\mathcal{F}} \text {. }
\end{align*}
$$
\]

And so,

$$
\begin{aligned}
& \prod_{0 \leq k \leq n-1}\left(1-(\hat{\phi} / \phi)^{k} x\right) \\
= & \prod_{0 \leq k \leq n-1}\left(1-\phi^{-k} \hat{\phi}^{k} x\right) \\
= & \sum_{0 \leq k \leq n}(-1)^{k}\binom{n}{k}_{\hat{\phi} / \phi}(\hat{\phi} / \phi)^{k(k-1) / 2} x^{k} \\
= & \sum_{0 \leq k \leq n}(-1)^{k} \phi^{k^{2}-n k}\binom{n}{k}_{\mathcal{F}}(\hat{\phi} / \phi)^{k(k-1) / 2} x^{k} \\
= & \sum_{0 \leq k \leq n}(-1)^{k} \phi^{k(k+1) / 2-n k} \hat{\phi}^{k(k-1) / 2}\binom{n}{k}_{\mathcal{F}} x^{k} .
\end{aligned}
$$

Substituting $\phi^{n-1} x$ for x yields

$$
\begin{aligned}
& \prod_{0 \leq k \leq n-1}\left(1-\phi^{-k} \hat{\phi}^{k} \phi^{n-1} x\right) \\
= & \prod_{0 \leq k \leq n-1}\left(1-\phi^{n-k-1} \hat{\phi}^{k} x\right) \\
= & \sum_{0 \leq k \leq n}(-1)^{k} \phi^{k(k+1) / 2-n k} \hat{\phi}^{k(k-1) / 2}\binom{n}{k}_{\mathcal{F}}\left(\phi^{n-1} x\right)^{k} \\
= & \sum_{0 \leq k \leq n}(-1)^{k} \phi^{k(k+1) / 2-n k} \hat{\phi}^{k(k-1) / 2}\binom{n}{k}_{\mathcal{F}} \phi^{k n-k} x^{k} \\
= & \sum_{0 \leq k \leq n}(-1)^{k} \phi^{k(k+1) / 2-k} \hat{\phi}^{k(k-1) / 2}\binom{n}{k}_{\mathcal{F}} x^{k} \\
= & \sum_{0 \leq k \leq n}(-1)^{k} \phi^{k(k-1) / 2} \hat{\phi}^{k(k-1) / 2}\binom{n}{k}_{\mathcal{F}} x^{k} \\
= & \sum_{0 \leq k \leq n}(-1)^{k}(\phi \hat{\phi})^{k(k-1) / 2}\binom{n}{k}_{\mathcal{F}} x^{k} \\
= & \sum_{0 \leq k \leq n}(-1)^{k}(-1)^{k(k-1) / 2}\binom{n}{k}_{\mathcal{F}} x^{k} \\
= & \sum_{0 \leq k \leq n}(-1)^{k(k+1) / 2}\binom{n}{k}_{\mathcal{F}} x^{k} .
\end{aligned}
$$

Substituting $1 / x$ for x yields

$$
\begin{align*}
& \prod_{0 \leq k \leq n-1}\left(1-\phi^{n-k-1} \hat{\phi}^{k} / x\right) \\
= & \prod_{0 \leq k \leq n-1} \frac{x-\phi^{n-k-1} \hat{\phi}^{k}}{x} \\
= & \frac{1}{x^{n}} \prod_{0 \leq k \leq n-1}\left(x-\phi^{n-k-1} \hat{\phi}^{k}\right) \\
= & \sum_{0 \leq k \leq n}(-1)^{k(k+1) / 2}\binom{n}{k}_{\mathcal{F}}(1 / x)^{k} \\
= & \sum_{0 \leq k \leq n}(-1)^{k(k+1) / 2}\binom{n}{k}_{\mathcal{F}} \frac{1}{x^{k}} \\
= & \sum_{0 \leq k \leq n}(-1)^{\lceil k / 2\rceil}\binom{n}{k}_{\mathcal{F}} \frac{1}{x^{k}} \tag{30.9}
\end{align*}
$$

if and only if

$$
\prod_{0 \leq k \leq n-1}\left(x-\phi^{n-k-1} \hat{\phi}^{k}\right)=\sum_{0 \leq k \leq n}(-1)^{\lceil k / 2\rceil}\binom{n}{k}_{\mathcal{F}} x^{n-k}
$$

or equivalently,

$$
\prod_{0 \leq j \leq n}\left(x-\phi^{j} \hat{\phi}^{n-j}\right)=\sum_{0 \leq k \leq n+1}(-1)^{\lceil k / 2\rceil}\binom{n+1}{k}_{\mathcal{F}} x^{n+1-k}
$$

and hence the result.
Preliminary Result 30.11. We may show that

$$
\begin{equation*}
\left[\mathbf{A}_{n+1}^{k}\right]_{n, j}=\binom{n}{j} F_{k+1}^{j} F_{k}^{n-j} \tag{30.11}
\end{equation*}
$$

In the case that $k=0$,

$$
\begin{aligned}
{\left[\mathbf{A}_{n+1}^{0}\right]_{n, j} } & =\delta_{n j} \\
& =\binom{n}{j} F_{0+1}^{j} F_{0}^{n-j} .
\end{aligned}
$$

Then, assuming

$$
\left[\mathbf{A}_{n+1}^{k}\right]_{n, j}=\binom{n}{j} F_{k+1}^{j} F_{k}^{n-j}
$$

we must show that

$$
\left[\mathbf{A}_{n+1}^{k+1}\right]_{n, j}=\binom{n}{j} F_{k+2}^{j} F_{k+1}^{n-j}
$$

But

$$
\begin{align*}
& {\left[\mathbf{A}_{n+1}^{k+1}\right]_{n, j} } \\
&=\left[\mathbf{A}_{n+1}^{k} \cdot \mathbf{A}_{n+1}\right]_{n, j} \\
&=\sum_{0 \leq m \leq n}\left[\mathbf{A}_{n+1}^{k}\right]_{n, m}\left[\mathbf{A}_{n+1}\right]_{m, j} \\
&=\sum_{0 \leq m \leq n}\binom{n}{m} F_{k+1}^{m} F_{k}^{n-m}\left[\mathbf{A}_{n+1}\right]_{m, j} \\
&=\sum_{0 \leq m \leq n}\binom{n}{m} F_{k+1}^{m} F_{k}^{n-m}\binom{m}{n-j} \\
&=\sum_{0 \leq m \leq n}\binom{n}{n-j}\binom{n-(n-j)}{m-(n-j)} F_{k+1}^{m} F_{k}^{n-m} \tag{1.2.6-2}\\
&=\sum_{0 \leq m \leq n}\binom{n}{n-j}\binom{j}{j+m-n} F_{k+1}^{m} F_{k}^{n-m} \\
&= \sum_{0 \leq m \leq n}\binom{n}{n-j} F_{k+1}^{n-j}\binom{j}{j+m-n} F_{k+1}^{j+m-n} F_{k}^{n-m} \\
&=\binom{n}{j} F_{k+1}^{n-j} \sum_{0 \leq m \leq j}\binom{j}{m} F_{k+1}^{m} F_{k}^{j-m} \\
&=\binom{n}{j} F_{k+1}^{n-j}\left(F_{k+1}+F_{k}\right)^{j} \\
&=\binom{n}{j} F_{k+2}^{j} F_{k+1}^{n-j}
\end{align*}
$$

and hence the result.
Conclusion. We will now show that

$$
\sum_{0 \leq k \leq m}\binom{m}{k}_{\mathcal{F}}(-1)^{\lceil k / 2\rceil} F_{n^{\prime}-k}^{m-1}=0
$$

From (30.8) and (30.10), the characteristic polynomial satisifes

$$
p_{\mathbf{A}_{n+1}}(x)=\prod_{0 \leq j \leq n}\left(x-\phi^{j} \hat{\phi}^{n-j}\right)=\sum_{0 \leq k \leq n+1}(-1)^{\lceil k / 2\rceil}\binom{n+1}{k}_{\mathcal{F}} x^{n+1-k}
$$

But, by the Cayley-Hamilton theorem, every matrix satisifes its characteristic polynomial. And so,

$$
\sum_{0 \leq k \leq n+1}(-1)^{\lceil k / 2\rceil}\binom{n+1}{k}_{\mathcal{F}} \mathbf{A}_{n+1}^{n^{\prime}-1-k}=\mathcal{O}
$$

for $n^{\prime}-1 \geq n+1$, where \mathcal{O} denotes the $(n+1) \times(n+1)$ zero matrix. By (30.11), for $n=j$ and $k=n^{\prime}-1-k$,

$$
\left[\mathbf{A}_{n+1}^{n^{\prime}-1-k}\right]_{n, n}=\binom{n}{n} F_{n^{\prime}-1-k+1}^{n} F_{n^{\prime}-1-k}^{n-n}=F_{n^{\prime}-k}^{n}
$$

And so,

$$
\sum_{0 \leq k \leq n+1}(-1)^{\lceil k / 2\rceil}\binom{n+1}{k}_{\mathcal{F}} F_{n^{\prime}-k}^{n}=0
$$

or equivalently,

$$
\sum_{0 \leq k \leq m}\binom{m}{k}_{\mathcal{F}}(-1)^{\lceil k / 2\rceil} F_{n^{\prime}-k}^{m-1}=0
$$

This concludes the proof.
[D. Jarden, Recurring Sequences, 2nd ed. (Jerusalem, 1966), 30-33; J. Riordan, Duke Math. J. 29 (1962), 5-12]
31. [M20] Show that $F_{2 n} \phi \bmod 1=1-\phi^{-2 n}$ and $F_{2 n+1} \phi \bmod 1=\phi^{-2 n-1}$.

We may show both identities.

Proposition. $F_{2 n} \phi \bmod 1=1-\phi^{-2 n}$.
Proof. Let n be an arbitrary integer. We must show that

$$
F_{2 n} \phi \bmod 1=1-\phi^{-2 n}
$$

or equivalently that

$$
1 \mid F_{2 n} \phi-\left(1-\phi^{-2 n}\right)
$$

But clearly, $1 \mid F_{2 n+1}-1$, and

$$
\begin{array}{rlrl}
F_{2 n+1}-1 & =F_{2 n} \phi-F_{2 n} \phi+F_{2 n+1}-1 & \\
& =F_{2 n} \phi+(-1)^{2 n+1} F_{2 n} \phi+(-1)^{2(n+1)} F_{2 n+1}-1 & \\
& =F_{2 n} \phi+(-1)^{2 n+1} F_{2 n} \phi+(-1)^{2 n+2} F_{2 n+1}-1 & \\
& =F_{2 n} \phi+F_{-2 n} \phi+F_{-(2 n+1)}-1 & & \\
& =F_{2 n} \phi-1+F_{-2 n} \phi+F_{-2 n-1} & & \\
& =F_{2 n} \phi-1+\phi^{-2 n} & & \text { by exercise } 8 \\
& =F_{2 n} \phi-\left(1-\phi^{-2 n}\right) . &
\end{array}
$$

That is,

$$
1 \mid F_{2 n} \phi-\left(1-\phi^{-2 n}\right)
$$

as we needed to show.

Proposition. $F_{2 n+1} \phi \bmod 1=\phi^{-2 n-1}$.
Proof. Let n be an arbitrary integer. We must show that

$$
F_{2 n+1} \phi \bmod 1=\phi^{-2 n-1}
$$

or equivalently that

$$
1 \mid F_{2 n+1} \phi-\phi^{-2 n-1}
$$

But clearly, $1 \mid F_{2 n+2}$, and

$$
\begin{array}{rlrl}
F_{2 n+2} & =F_{2 n+1} \phi-F_{2 n+1} \phi+F_{2 n+2} & \\
& =F_{2 n+1} \phi-(-1)^{2(n+1)} F_{2 n+1} \phi-(-1)^{2(n+1)+1} F_{2 n+2} & \\
& =F_{2 n+1} \phi-(-1)^{2 n+2} F_{2 n+1} \phi-(-1)^{2 n+3} F_{2 n+2} & \\
& =F_{2 n+1} \phi-F_{-(2 n+1)} \phi-F_{-(2 n+2)} & & \text { by exercise } 8 \\
& =F_{2 n+1} \phi-\left(F_{-2 n-1} \phi+F_{-2 n-2}\right) & \\
& =F_{2 n+1} \phi-\phi^{-2 n-1} . & & \text { by exercise } 11
\end{array}
$$

That is,

$$
1 \mid F_{2 n+1} \phi-\phi^{-2 n-1}
$$

as we needed to show.
32. [M24] The remainder of one Fibonacci number divided by another is \pm a Fibonacci number: Show that, modulo F_{n},

$$
F_{m n+r} \equiv \begin{cases}F_{r}, & \text { if } m \bmod 4=0 \\ (-1)^{r+1} F_{n-r}, & \text { if } m \bmod 4=1 \\ (-1)^{n} F_{r}, & \text { if } m \bmod 4=2 \\ (-1)^{r+1+n} F_{n-r}, & \text { if } m \bmod 4=3\end{cases}
$$

Proposition. $F_{m n+r} \equiv\left\{\begin{array}{ll}F_{r} & \text { if } m \bmod 4=0 \\ (-1)^{r+1} F_{n-r} & \text { if } m \bmod 4=1 \\ (-1)^{n} F_{r} & \text { if } m \bmod 4=2 \\ (-1)^{r+1+n} F_{n-r} & \text { if } m \bmod 4=3\end{array}\left(\bmod F_{n}\right)\right.$.
Proof. Let m, n, r be arbitrary integers, such that $m=n=r=0$ or $0 \leq r<m \leq n$. We must show that

$$
F_{m n+r} \equiv\left\{\begin{array}{ll}
F_{r} & \text { if } m \bmod 4=0 \\
(-1)^{r+1} F_{n-r} & \text { if } m \bmod 4=1 \\
(-1)^{n} F_{r} & \text { if } m \bmod 4=2 \\
(-1)^{r+1+n} F_{n-r} & \text { if } m \bmod 4=3
\end{array} \quad\left(\bmod F_{n}\right)\right.
$$

As preliminaries, note that since

$$
F_{n} \equiv 0 \quad\left(\bmod F_{n}\right)
$$

by repeated applications of Law 1.2.4-A,

$$
a F_{n} \equiv 0 \quad\left(\bmod F_{n}\right)
$$

for any integer a, which will be hereafter indicated as by Law 1.2.4- A^{*}. Also

$$
\begin{aligned}
F_{n} & \equiv 0 \\
& \equiv F_{n} \\
& \equiv F_{n+1}-F_{n-1} \quad\left(\bmod F_{n}\right)
\end{aligned}
$$

if and only if

$$
\begin{equation*}
F_{n+1} \equiv F_{n-1} \quad\left(\bmod F_{n}\right) \tag{32.1}
\end{equation*}
$$

In the case that $m \bmod 4=0$, we have that

$$
\begin{aligned}
F_{r} & \equiv F_{r} \\
& \equiv F_{n+1}^{0} F_{r} \\
& \equiv F_{n+1}^{m \bmod 4} F_{r} \quad\left(\bmod F_{n}\right)
\end{aligned}
$$

In the case that $m \bmod 4=1$, we have that

$$
\begin{array}{rlr}
(-1)^{r+1} F_{n-r} & \equiv(-1)^{r+1} F_{n-r} F_{1} & \\
& \equiv(-1)^{r+1} F_{n-r}(-1)^{2} F_{1} & \\
& \equiv(-1)^{r+1} F_{n-r}(-1)^{1+1} F_{1} & \\
& \equiv(-1)^{r+1} F_{n-r} F_{-1} & \\
& \equiv(-1)^{r+1} F_{n-(r+1)-(-1)} F_{-1} & \\
& \equiv F_{(r+1)+(-1)} F_{n-(-1)}-F_{r+1} F_{n} & \\
& \equiv F_{r} F_{n+1}-F_{r+1} F_{n} & \\
& \equiv F_{r} F_{n+1} & \\
& \equiv F_{n+1}^{1} F_{r} & \\
& \equiv F_{n+1}^{m \bmod 4} F_{r} \quad\left(\bmod F_{n}\right) . &
\end{array}
$$

In the case that $m \bmod 4=2$, we have that

$$
\begin{array}{rlr}
(-1)^{n} F_{r} & \equiv(-1)^{n} F_{1} F_{r} & \\
& \equiv(-1)^{n}(-1)^{2} F_{1} F_{r} & \\
& \equiv(-1)^{n}(-1)^{1+1} F_{1} F_{r} & \\
& \equiv(-1)^{n} F_{-1} F_{1} F_{r} & \text { by exercise } 8 \\
& \equiv(-1)^{n} F_{n-n-1} F_{1} F_{r} & \\
& \equiv\left(F_{n+1} F_{n-1}-F_{n} F_{n}\right) F_{r} & \\
& \equiv F_{n+1} F_{n-1} F_{r}-F_{n}^{2} F_{r} & \text { by exercise } 17 \\
& \equiv F_{n+1} F_{n-1} F_{r} & \\
& \equiv F_{n+1} F_{n+1} F_{r} & \text { by Law } 1.2 .4-\text { A* }^{*} \\
& \equiv F_{n+1}^{2} F_{r} & \text { by }(32.1) \\
& \equiv F_{n+1}^{m \bmod 4} F_{r} \quad\left(\bmod F_{n}\right) . &
\end{array}
$$

In the case that $m \bmod 4=3$, we have that

$$
\begin{array}{rlrl}
(-1)^{r+1+n} F_{n-r} & \equiv(-1)^{n}(-1)^{r+1} F_{n-r} & \\
& \equiv(-1)^{n}(-1)^{r+1} F_{n-r} F_{1} & \\
& \equiv(-1)^{n}(-1)^{r+1} F_{n-r}(-1)^{2} F_{1} & \\
& \equiv(-1)^{n}(-1)^{r+1} F_{n-r}(-1)^{1+1} F_{1} & & \\
& \equiv(-1)^{n}(-1)^{r+1} F_{n-r} F_{-1} & & \\
& \equiv(-1)^{n}(-1)^{r+1} F_{n-(r+1)-(-1)} F_{-1} & \\
& \equiv(-1)^{n} F_{(r+1)+(-1)} F_{n-(-1)}-F_{r+1} F_{n} & & \text { by exercise } 8 \\
& \equiv(-1)^{n} F_{r} F_{n+1}-F_{r+1} F_{n} & & \\
& \equiv(-1)^{n} F_{r} F_{n+1} & & \text { by Law } 1.2 .4-A^{*} \\
& \equiv(-1)^{n} F_{1} F_{r} F_{n+1} & & \\
& \equiv(-1)^{n}(-1)^{2} F_{1} F_{r} F_{n+1} & & \\
& \equiv(-1)^{n}(-1)^{1+1} F_{1} F_{r} F_{n+1} & & \\
& \equiv(-1)^{n} F_{-1} F_{1} F_{r} F_{n+1} & & \text { by exercise } 8 \\
& \equiv(-1)^{n} F_{n-n-1} F_{1} F_{r} F_{n+1} & \\
& \equiv\left(F_{n+1} F_{n-1}-F_{n} F_{n}\right) F_{r} F_{n+1} & \\
& \equiv F_{n+1}^{2} F_{n-1} F_{r}-F_{n}^{2} F_{r} F_{n+1} & & \\
& \equiv F_{n+1}^{2} F_{n-1} F_{r} & & \text { by Law } 1.2 .4-A^{*} \\
& \equiv F_{n+1}^{2} F_{n+1} F_{r} & & \text { by }(32.1) \\
& \equiv F_{n+1}^{3} F_{r} & & \\
& \equiv F_{n+1}^{m \bmod 4} F_{r} \quad\left(\bmod F_{n}\right) . &
\end{array}
$$

That is, we must show that

$$
F_{m n+r} \equiv F_{n+1}^{m \bmod 4} F_{r} \quad\left(\bmod F_{n}\right)
$$

If $m=0$, then $n=m=r=0, m \bmod 4=0$, and

$$
\begin{aligned}
F_{m n+r} & \equiv F_{0 \cdot 0+0} \\
& \equiv F_{0} \\
& \equiv F_{1}^{0} F_{0} \\
& \equiv F_{0+1}^{0} F_{0} \\
& \equiv F_{n+1}^{m \bmod 4} F_{r} \quad\left(\bmod F_{n}\right)
\end{aligned}
$$

If $m=1$, then $m \bmod 4=1$, and

$$
\begin{array}{rlr}
F_{m n+r} & \equiv F_{1 \cdot n+r} & \\
& \equiv F_{n+r} & \\
& \equiv F_{r} F_{n+1}+F_{r-1} F_{n} & \text { by Eq. }(4) \\
& \equiv F_{r} F_{n+1} & \text { by Law } 1.2 .4-\mathrm{A}^{*} \\
& \equiv F_{n+1}^{1} F_{r} & \\
& \equiv F_{n+1}^{m \bmod 4} F_{r} \quad\left(\bmod F_{n}\right) . &
\end{array}
$$

If $m=2$, then $m \bmod 4=2$, and

$$
\begin{array}{rlr}
F_{m n+r} & \equiv F_{2 \cdot n+r} & \\
& \equiv F_{n+n+r} & \\
& \equiv F_{n+r} F_{n+1}+F_{n+r-1} F_{n} & \\
& \equiv F_{n+r} F_{n+1} & \text { by Eq. }(4) \\
& \equiv\left(F_{r} F_{n+1}+F_{r-1} F_{n}\right) F_{n+1} & \text { by Law 1.2.4-A* } \\
& \equiv F_{r} F_{n+1}^{2}+F_{r-1} F_{n+1} F_{n} & \\
& \equiv F_{r} F_{n+1}^{2} & \\
& \equiv F_{n+1}^{2} F_{r} & \\
& \equiv F_{n+1}^{m \bmod 4} F_{r} \quad\left(\bmod F_{n}\right) . & \\
&
\end{array}
$$

If $m=3$, then $m \bmod 4=3$, and

$$
\begin{array}{rlr}
F_{m n+r} & \equiv F_{3 \cdot n+r} & \\
& \equiv F_{n+2 n+r} & \\
& \equiv F_{2 n+r} F_{n+1}+F_{2 n+r-1} F_{n} & \\
& \equiv F_{2 n+r} F_{n+1} & \\
& \equiv F_{n+n+r} F_{n+1} & \\
& \equiv\left(F_{n+r} F_{n+1}+F_{n+r-1} F_{n}\right) F_{n+1} & \\
& \equiv F_{n+r} F_{n+1}^{2}+F_{n+r-1} F_{n+1} F_{n} & \text { by Eq. } 4) \\
& \equiv F_{n+r} F_{n+1}^{2} & \\
& \equiv\left(F_{r} F_{n+1}+F_{r-1} F_{n}\right) F_{n+1}^{2} & \\
& \equiv F_{r} F_{n+1}^{3}+F_{r-1} F_{n+1}^{2} F_{n} & \text { by Law } 1.2 .4-\mathrm{A}^{*} \\
& \equiv F_{r} F_{n+1}^{3} & \\
& \equiv F_{n+1}^{3} F_{r} & \\
& \equiv F_{n+1}^{m \bmod 4} F_{r} \quad\left(\bmod F_{n}\right) . & \\
& \text { by Law } 1.2 .4-\text { A }^{*} \\
& &
\end{array}
$$

Then, assuming

$$
F_{m n+r} \equiv F_{n+1}^{m \bmod 4} F_{r} \quad\left(\bmod F_{n}\right)
$$

we must show that

$$
F_{(m+1) n+r} \equiv F_{n+1}^{(m+1) \bmod 4} F_{r} \quad\left(\bmod F_{n}\right)
$$

But

$$
\begin{array}{rlr}
F_{(m+1) n+r} & \equiv F_{m n+n+r} & \\
& \equiv F_{n+m n+r} & \\
& \equiv F_{m n+r} F_{n+1}+F_{m n+r-1} F_{n} & \\
& \equiv F_{m n+r} F_{n+1} & \\
& \equiv \text { by Lq. }^{m}(4) \\
& \equiv F_{n+1}^{m \bmod 4} F_{r} F_{n+1} & \\
& \equiv F_{n+1}^{m \bmod 4+1} F_{r} \quad\left(\bmod F_{n}\right) . &
\end{array}
$$

Here, we divide the proof into cases depending on $m \bmod 4$. In the case that $m \bmod 4=$
$0,(m+1) \bmod 4=1$ and

$$
\begin{aligned}
F_{n+1}^{m \bmod 4+1} F_{r} & \equiv F_{n+1}^{0+1} F_{r} \\
& \equiv F_{n+1}^{1} F_{r} \\
& \equiv F_{n+1}^{(m+1) \bmod 4} F_{r} \quad\left(\bmod F_{n}\right)
\end{aligned}
$$

In the case that $m \bmod 4=1,(m+1) \bmod 4=2$ and

$$
\begin{aligned}
F_{n+1}^{m \bmod 4+1} F_{r} & \equiv F_{n+1}^{1+1} F_{r} \\
& \equiv F_{n+1}^{2} F_{r} \\
& \equiv F_{n+1}^{(m+1) \bmod 4} F_{r} \quad\left(\bmod F_{n}\right)
\end{aligned}
$$

In the case that $m \bmod 4=2,(m+1) \bmod 4=3$ and

$$
\begin{aligned}
F_{n+1}^{m \bmod 4+1} F_{r} & \equiv F_{n+1}^{2+1} F_{r} \\
& \equiv F_{n+1}^{3} F_{r} \\
& \equiv F_{n+1}^{(m+1) \bmod 4} F_{r} \quad\left(\bmod F_{n}\right)
\end{aligned}
$$

In the case that $m \bmod 4=3,(m+1) \bmod 4=0$ and

$$
\begin{array}{rlr}
F_{n+1}^{m \bmod 4+1} F_{r} & \equiv F_{n+1}^{3+1} F_{r} & \\
& \equiv F_{n+1}^{4} F_{r} & \\
& \equiv\left(F_{n+1} F_{n+1}\right)^{2} F_{r} & \text { by }(32.1) \\
& \equiv\left(F_{n+1} F_{n-1}\right)^{2} F_{r} & \\
& \equiv\left(F_{n+1} F_{n-1}\right)^{2} F_{r}+F_{n} F_{r}\left(-2 F_{n} F_{n+1} F_{n-1}+F_{n}^{3}\right) & \text { by Law 1.2.4-A* } \\
& \equiv\left(\left(F_{n+1} F_{n-1}\right)^{2}+F_{n}\left(-2 F_{n} F_{n+1} F_{n-1}+F_{n}^{3}\right)\right) F_{r} & \\
& \equiv\left(\left(F_{n+1} F_{n-1}\right)^{2}-2 F_{n}^{2} F_{n+1} F_{n-1}+\left(F_{n}^{2}\right)^{2}\right) F_{r} & \\
& \equiv\left(F_{n+1} F_{n-1}-F_{n}^{2}\right)^{2} F_{r} & \\
& \equiv\left(F_{n+1} F_{n-1}-F_{n} F_{n}\right)^{2} F_{r} &
\end{array}
$$

$$
\equiv\left((-1)^{n} F_{n-n-1} F_{1}\right)^{2} F_{r}
$$

by exercise 17

$$
\equiv\left((-1)^{n} F_{-1} F_{1}\right)^{2} F_{r}
$$

$$
\equiv\left((-1)^{n} F_{-1}\right)^{2} F_{r}
$$

$$
\equiv\left((-1)^{n}(-1)^{1+1} F_{1}\right)^{2} F_{r}
$$

by exercise 8

$$
\equiv\left((-1)^{n}(-1)^{2} F_{1}\right)^{2} F_{r}
$$

$$
\equiv\left((-1)^{n}(-1)^{2}\right)^{2} F_{r}
$$

$$
\equiv\left((-1)^{n}\right)^{2} F_{r}
$$

$$
\equiv(-1)^{2 n} F_{r}
$$

$$
\equiv\left((-1)^{2}\right)^{n} F_{r}
$$

$$
\equiv 1^{n} F_{r}
$$

$$
\equiv 1 \cdot F_{r}
$$

$$
\equiv F_{n+1}^{0} F_{r}
$$

$$
\equiv F_{n+1}^{(m+1) \bmod 4} F_{r} \quad\left(\bmod F_{n}\right)
$$

And so,

$$
\begin{aligned}
F_{(m+1) n+r} & \equiv F_{n+1}^{m \bmod 4+1} F_{r} \\
& \equiv F_{n+1}^{(m+1) \bmod 4} F_{r} \quad\left(\bmod F_{n}\right)
\end{aligned}
$$

as we needed to show.
33. [HM24] Given that $z=\pi / 2+i \ln \phi$, show that $\sin n z / \sin z=i^{1-n} F_{n}$.

Proposition. $\sin (n z) / \sin (z)=i^{1-n} F_{n}$ if $z=\pi / 2+i \ln \phi$.
Proof. Let n be an arbitrary nonnegative integer, and $z=\pi / 2+i \ln \phi$. We must show that

$$
\sin (n z) / \sin (z)=i^{1-n} F_{n}
$$

As preliminaries, note that

$$
\begin{aligned}
& \cos (z)=\frac{1}{2}\left(e^{i z}+e^{-i z}\right) \\
& =\frac{1}{2}\left(e^{i(\pi / 2+i \ln \phi)}+e^{-i(\pi / 2+i \ln \phi)}\right) \\
& \left.=\frac{1}{2}\left(e^{i \pi / 2+i^{2} \ln \phi}+e^{-\left(i \pi / 2+i^{2} \ln \phi\right.}\right)\right) \\
& =\frac{1}{2}\left(e^{i \pi / 2-\ln \phi}+e^{-i \pi / 2+\ln \phi}\right) \\
& =\frac{1}{2}\left(e^{i \pi / 2} e^{-\ln \phi}+e^{-i \pi / 2} e^{\ln \phi}\right) \\
& =\frac{1}{2}\left(\sqrt{e^{i \pi}}\left(e^{\ln \phi}\right)^{-1}+\left(\sqrt{e^{i \pi}}\right)^{-1} e^{\ln \phi}\right) \\
& =\frac{1}{2}\left(\sqrt{-1}(\phi)^{-1}+(\sqrt{-1})^{-1} \phi\right) \\
& =\frac{1}{2}\left(i(\phi)^{-1}+(i)^{-1} \phi\right) \\
& =\frac{1}{2}(i / \phi+\phi / i) \\
& =\frac{1}{2}(2 i /(1+\sqrt{5})+(1+\sqrt{5}) / 2 i) \\
& =\frac{1}{2}\left((2 i)^{2} / 2 i(1+\sqrt{5})+(1+\sqrt{5})^{2} / 2 i(1+\sqrt{5})\right) \\
& =\frac{1}{2}(-4 /(2 i+2 i \sqrt{5})+(1+2 \sqrt{5}+5) /(2 i+2 i \sqrt{5})) \\
& =\frac{1}{2}(-4+(1+2 \sqrt{5}+5)) /(2 i+2 i \sqrt{5}) \\
& =\frac{1}{2}(-4+1+2 \sqrt{5}+5) /(2 i+2 i \sqrt{5}) \\
& =\frac{1}{2}(2+2 \sqrt{5}) /(2 i+2 i \sqrt{5}) \\
& =(1+\sqrt{5}) / 2 i(1+\sqrt{5}) \\
& =1 / 2 i \\
& =-i / 2
\end{aligned}
$$

and

$$
\begin{aligned}
2 \sin (n z) \cos (z) & =\sin (n z+z)+\sin (n z-z) \\
& =\sin ((n+1) z)+\sin ((n-1) z)
\end{aligned}
$$

so that

$$
\begin{aligned}
& 2 \sin (n z) \cos (z)=\sin ((n+1) z)+\sin ((n-1) z) \\
& \Longleftrightarrow \quad-2 i \sin (n z) / 2=\sin ((n+1) z)+\sin ((n-1) z) \\
& \Longleftrightarrow \quad-i \sin (n z)=\sin ((n+1) z)+\sin ((n-1) z) \\
& \Longleftrightarrow \quad \sin (n z)=-(\sin ((n+1) z)+\sin ((n-1) z)) / i \\
& \Longleftrightarrow \quad \sin (n z)=i(\sin ((n+1) z)+\sin ((n-1) z)) \\
& \Longleftrightarrow \quad \sin (n z) / \sin (z)=i(\sin ((n+1) z)+\sin ((n-1) z)) / \sin (z)
\end{aligned}
$$

If $n=0$,

$$
\begin{aligned}
\sin (n z) / \sin (z) & =i(\sin ((n+1) z)+\sin ((n-1) z)) / \sin (z) \\
& =i(\sin (z)+\sin (-z)) / \sin (z) \\
& =i(\sin (z)-\sin (z)) / \sin (z) \\
& =i \cdot 0 \\
& =i^{1} F_{0} \\
& =i^{1-n} F_{n}
\end{aligned}
$$

and if $n=1$,

$$
\begin{aligned}
\sin (n z) / \sin (z) & =i(\sin ((n+1) z)+\sin ((n-1) z)) / \sin (z) \\
& =i(\sin (2 z)+\sin (0)) / \sin (z) \\
& =i \sin (2 z) / \sin (z) \\
& =2 i \cos (z) \sin (z) / \sin (z) \\
& =2 i \cos (z) \\
& =-2 i^{2} / 2 \\
& =-i^{2} \\
& =-(-1) \\
& =1 \\
& =i^{0} \\
& =i^{1-1} F_{1} \\
& =i^{1-n} F_{n}
\end{aligned}
$$

Then, assuming that

$$
\sin (n z) / \sin (z)=i^{1-n} F_{n}
$$

we must show that

$$
\sin ((n+1) z) / \sin (z)=i^{1-(n+1)} F_{n+1}
$$

But

$$
\begin{aligned}
& \sin ((n+1) z) / \sin (z) \\
& \quad=(2 \cos (z) \sin (n z)-\sin ((n-1) z)) / \sin (z) \\
& \quad=(-2 i \sin (n z) / 2-\sin ((n-1) z)) / \sin (z) \\
& \quad=(-i \sin (n z)-\sin ((n-1) z)) / \sin (z) \\
& \quad=i^{-1} \sin (n z) / \sin (z)-\sin ((n-1) z) / \sin (z) \\
& \quad=i^{-1} i^{1-n} F_{n}-i^{1-(n-1)} F_{n-1} \\
& \quad=i^{1-(n+1)} F_{n}-i^{1-n+1} F_{n-1} \\
& \quad=i^{1-(n+1)} F_{n}+i^{1-n-1} F_{n-1} \\
& \quad=i^{1-(n+1)} F_{n}+i^{1-(n+1)} F_{n-1} \\
& \quad=i^{1-(n+1)}\left(F_{n}+F_{n-1}\right) \\
& \quad=i^{1-(n+1)} F_{n+1}
\end{aligned}
$$

as we needed to show.

- 34. [M24] (The Fibonacci number system.) Let the notation $k \gg m$ mean that $k \geq m+2$. Show that every positive integer n has a unique representation $n=F_{k_{1}}+F_{k_{2}}+\cdots+F_{k_{r}}$, where $k_{1} \gg k_{2} \gg \cdots \gg k_{r} \gg 0$.

First, we prove a corollary.

Proposition. $\sum_{1 \leq j \leq r} F_{k_{j}}<F_{k_{r}+1}$, where $k_{j}>k_{j+1}+1$ for $1 \leq j<r$ and $k_{r}>1$.
Proof. Let r be an arbitrary positive integer. We must show that

$$
\begin{equation*}
\sum_{1 \leq j \leq r} F_{k_{j}}<F_{k_{1}+1} \tag{34.1}
\end{equation*}
$$

where $k_{j}>k_{j+1}+1$ for $1 \leq j<r$ and $k_{r}>1$. If $r=1$,

$$
\sum_{1 \leq j \leq 1} F_{k_{j}}=F_{k_{1}}=F_{2}=1<2=F_{3}=F_{2+1}=F_{k_{1}+1}
$$

where $k_{1}=2>1$. Then, assuming

$$
\sum_{1 \leq j \leq r} F_{k_{j}}<F_{k_{1}+1}
$$

where $k_{j}>k_{j+1}+1$ for $1 \leq j<r$ and $k_{r}>1$, we must show that

$$
\sum_{1 \leq j \leq r^{\prime}} F_{k_{j}^{\prime}}<F_{k_{1}^{\prime}+1}
$$

where $r^{\prime}=r+1, k_{j}^{\prime}>k_{j+1}^{\prime}+1$ for $1 \leq j<r^{\prime}$ and $k_{r^{\prime}}>1$. But since

$$
\begin{aligned}
k_{1}^{\prime}>k_{2}^{\prime}+1 & \Longleftrightarrow k_{1}^{\prime} \geq k_{2}^{\prime}+2 \\
& \Longleftrightarrow k_{1}^{\prime}-1 \geq k_{2}^{\prime}+1 \\
& \Longleftrightarrow \quad F_{k_{2}^{\prime}+1} \leq F_{k_{1}^{\prime}-1}
\end{aligned}
$$

then

$$
\begin{aligned}
\sum_{1 \leq j \leq r^{\prime}} F_{k_{j}^{\prime}} & =F_{k_{1}^{\prime}}+\sum_{2 \leq j \leq r^{\prime}} F_{k_{j}^{\prime}} \\
& <F_{k_{1}^{\prime}}+F_{k_{2}^{\prime}+1} \\
& \leq F_{k_{1}^{\prime}}+F_{k_{1}^{\prime}-1} \\
& =F_{k_{1}^{\prime}+1}
\end{aligned}
$$

as we needed to show.
Then, we proceed with the requested proof.

Proposition. Every positive integer n has a unique representation $n=\sum_{1 \leq j \leq r} F_{k_{j}}$, where $k_{j}>k_{j+1}+1$ for $1 \leq j<r$ and $k_{r}>1$.
Proof. Let n be an arbitrary positive integer. We must show that for n there exists a representation

$$
n=\sum_{1 \leq j \leq r} F_{k_{j}}
$$

where $k_{j}>k_{j+1}+1$ for $1 \leq j<r$ and $k_{r}>1$; and that this representation is unique.
Existence. If $n=1$,

$$
1=\sum_{1 \leq j \leq 1} F_{k_{j}}=F_{k_{1}}=F_{2}
$$

where $k_{1}=2>1$; if $n=2$,

$$
2=\sum_{1 \leq j \leq 1} F_{k_{j}}=F_{k_{1}}=F_{3}
$$

where $k_{1}=3>1 ;$ if $n=3$,

$$
3=\sum_{1 \leq j \leq 1} F_{k_{j}}=F_{k_{1}}=F_{4}
$$

where $k_{1}=4>1$; and if $n=4$,

$$
4=\sum_{1 \leq j \leq 2} F_{k_{j}}=F_{k_{1}}+F_{k_{2}}=F_{4}+F_{2}=3+1
$$

where $k_{1}=4>2+1=k_{2}+1, k_{2}=2>1$. Then, assuming there exists a representation

$$
n=\sum_{1 \leq j \leq r} F_{k_{j}}
$$

we must show that there exists a representation

$$
n+1=\sum_{1 \leq j \leq r^{\prime}} F_{k_{j}^{\prime}}
$$

In the case that $n+1$ is a Fibonacci number $F_{k^{\prime}}$, we have that

$$
n+1=\sum_{1 \leq j \leq 1} F_{k_{j}^{\prime}}=F_{k_{1}^{\prime}}=F_{k^{\prime}}
$$

where $k_{1}^{\prime}=k^{\prime}>1$. Otherwise, in the case that $n+1$ is not a Fibonacci number, it must lie between two Fibonacci numbers. That is, there must exist a j^{\prime} such that

$$
F_{j^{\prime}}<n+1<F_{j^{\prime}+1}
$$

Let $m=n+1-F_{j^{\prime}}$. Since $m \leq n$, by the inductive hypothesis, there exists a representation

$$
m=\sum_{1 \leq j \leq r} F_{k_{j}}
$$

But

$$
\begin{aligned}
n+1<F_{j^{\prime}+1} & \Longleftrightarrow m+F_{j^{\prime}}<F_{j^{\prime}+1} \\
& \Longleftrightarrow m<F_{j^{\prime}+1}-F_{j^{\prime}} \\
& \Longleftrightarrow m<F_{j^{\prime}-1} .
\end{aligned}
$$

That is, m does not contain $F_{j^{\prime}-1}$, and so

$$
n+1=\sum_{1 \leq j \leq r^{\prime}} F_{k_{j}^{\prime}}=F_{j^{\prime}}+m=F_{j^{\prime}}+\sum_{1 \leq j \leq r} F_{k_{j}}
$$

where $r^{\prime}=r+1, k_{j}^{\prime}=k_{j-1}$ if $2 \leq j \leq r^{\prime}, k_{1}^{\prime}=j^{\prime}$ otherwise, and $k_{1}^{\prime}=j^{\prime}>k_{1}+1$, and hence existence.

Uniqueness. Let n have the two representations

$$
n=\sum_{1 \leq j \leq r} F_{k_{j}}
$$

and

$$
n=\sum_{1 \leq j \leq r^{\prime}} F_{k_{j}^{\prime}}
$$

and let the Fibonacci numbers of each be represented by the sets $S=\left\{F_{k_{j}}\right\}$ and $S^{\prime}=\left\{F_{k_{j}^{\prime}}\right\}$. The previous result has shown that they each contain non-consecutive Fibonacci numbers, and have the same cardinality: $r=r^{\prime}$. Then let $T=S-S^{\prime}$ and $T^{\prime}=S^{\prime}-S$. Since $\sum_{s \in S} s=\sum_{s^{\prime} \in S^{\prime}} s^{\prime}$, we also have that $\sum_{t \in T} t=\sum_{t^{\prime} \in T^{\prime}} t^{\prime}$. We will assume that $S \neq S^{\prime}$, so that neither T nor T^{\prime} is empty. Select the largest element of each, and let these be F_{t} and $F_{t^{\prime}}$, respectively. Note that $F_{t} \neq F_{t^{\prime}}$. Without loss of generaltiy, assume $F_{t}<F_{t^{\prime}}$. Then, by (34.1),

$$
\sum_{t \in T} t<F_{t+1} \leq F_{t^{\prime}} \leq \sum_{t^{\prime} \in T^{\prime}} t^{\prime}
$$

But $\sum_{t \in T} t=\sum_{t^{\prime} \in T^{\prime}} t^{\prime}$, a contradiction, and so, $T=T^{\prime}=\varnothing$ and $S=S^{\prime}$, and hence uniqueness.

This concludes the proof.
[C. G. Lekkerkerker, Simon Stevin 29 (1952), 190-195; section 7.2.1.7; exercise 5.4.2-10; section 7.1.3]
35. [M24] (A phi number system.) Consider real numbers written with the digits 0 and 1 using base ϕ; thus $(100.1)_{\phi}=\phi^{2}+\phi^{-1}$. Show that there are infinitely many ways to represent the number 1 ; for example, $1=(.11)_{\phi}=(.011111 \ldots)_{\phi}$. But if we require that no two adjacent 1 s occur and that the representation does not end with the infinite sequence $01010101 \ldots$, then every nonnegative number has a unique representation. What are the representations of integers?

In the phi number system, there are infinitely many ways to represent the number 1 . To see why, note that since $\phi^{k}=\phi^{k-1}+\phi^{k-2}$,

$$
1=\phi^{0}=1_{\phi}
$$

We may continue to expand the last term for infinitely many ways to represent the number 1 . As

$$
\begin{gathered}
1=\phi^{0}=\phi^{-1}+\phi^{-2}=.11_{\phi} \\
1=\phi^{-1}+\phi^{-2}=\phi^{-1}+\phi^{-3}+\phi^{-4}=.1011_{\phi}
\end{gathered}
$$

or

$$
1=\phi^{-1}+\phi^{-3}+\phi^{-4}=\phi^{-1}+\phi^{-3}+\phi^{-5}+\phi^{-6}=.101011_{\phi}
$$

ad infinitum. But we may avoid this by requiring that no two adjacent 1 s occur and that the representation does not end with the infinite sequence $01010101 \ldots$. That is, by requiring that all adjacent $\phi^{k-1}+\phi^{k-2}$ terms be instead represented by their sum ϕ^{k} and not avoided by further, infinite expansion of the last term.

The representations of nonnegative integers are then as follows.
Algorithm 35.1 (Representation of nonnegative integers in a phi number system.). Given a nonnegative integer n, find its unique representation in the phi number system.
35.1.a. [Initialize.] Set $x \leftarrow n, D \leftarrow \varnothing$, the set of integer phi exponents.
35.1.b. [Test for zero.] If $x=0$, the algorithm terminates; we have the representation of n by the integer phi exponents in D, empty if n zero.
35.1.c. [Find largest exponent.] If $x>0$, find the largest k such that $\phi^{k} \leq x$, set $D \leftarrow D \cup\{k\}$, $x \leftarrow x-\phi^{k}$, and return to step 35.1.b.
For example, if $n=0, D=\varnothing$ and $n=0_{\phi}$; if $n=1, D=\{0\}$ and $n=1_{\phi}$; if $n=2, D=\{1,-2\}$ and $n=10.01_{\phi}$; etc. Since we always choose ϕ^{k} over any of the terms of the sum $\phi^{k-1}+\phi^{k-2}$, we satisfy the requirement of having no two adjacent 1 s and not ending with the infinite sequence 01010101...
[G. M. Bergman, Mathematics Magazine 31 (1957), 98-110]
36. [M32] (Fibonacci strings.) Let $S_{1}=$ "a", $S_{2}=$ "b", and $S_{n+2}=S_{n+1} S_{n}, n>0$; in other words, S_{n+2} is formed by placing S_{n} at the right of S_{n+1}. We have $S_{3}=$ "ba", $S_{4}=$ "bab", $S_{5}=$ "babba", etc. Clearly S_{n} has F_{n} letters. Explore the properties of S_{n}. (Where do double letters occur? Can you predict the value of the k th letter of S_{n} ? What is the density of the $b s$? And so on.)

As noted, S_{n} has F_{n} letters.
Except for $S_{1}=\mathrm{a}$, no S_{n} starts with a, but all with b; and since $S_{2}=\mathrm{b}$, every a is preceded by a b . The letter b is doubled only when two terms are concatenated. That is, there are no a doubles, only b doubles.

The k th letter of S_{n} is $\alpha\left(S_{n}, k\right)$ where

$$
\alpha\left(S_{n}, k\right)= \begin{cases}\mathrm{b} & \text { if } n>1 \text { and }\left\lfloor(k+1) \phi^{-1}\right\rfloor-\left\lfloor k \phi^{-1}\right\rfloor=1 \\ \mathrm{a} & \text { otherwise }\end{cases}
$$

for $n>0,1 \leq k \leq F_{n}$, as proven next.
In the case that $n=1, k=1, \alpha\left(S_{1}, 1\right)=\alpha(\mathrm{a}, 1)=\mathrm{a}$, and $n \ngtr 1$. In the case that $n=2, k=1, \alpha\left(S_{2}, 1\right)=\alpha(\mathrm{b}, 1)=\mathrm{b}$, and

$$
\begin{aligned}
\left\lfloor(1+1) \phi^{-1}\right\rfloor-\left\lfloor 1 \cdot \phi^{-1}\right\rfloor & =\left\lfloor 2 \cdot \phi^{-1}\right\rfloor-\left\lfloor 1 \cdot \phi^{-1}\right\rfloor \\
& =1-0 \\
& =1
\end{aligned}
$$

In the case that $n=3,1 \leq k \leq F_{3}=2, \alpha\left(S_{3}, k\right)=\alpha(\mathrm{ba}, k)$; and if $k=1$, then $\alpha(\mathrm{ba}, 1)=\mathrm{b}$ and

$$
\begin{aligned}
\left\lfloor(1+1) \phi^{-1}\right\rfloor-\left\lfloor 1 \cdot \phi^{-1}\right\rfloor & =\left\lfloor 2 \cdot \phi^{-1}\right\rfloor-\left\lfloor 1 \cdot \phi^{-1}\right\rfloor \\
& =1-0 \\
& =1
\end{aligned}
$$

and if $k=2$, then $\alpha(\mathrm{ba}, 2)=\mathrm{a}$ and

$$
\begin{aligned}
\left\lfloor(2+1) \phi^{-1}\right\rfloor-\left\lfloor 2 \cdot \phi^{-1}\right\rfloor & =\left\lfloor 3 \cdot \phi^{-1}\right\rfloor-\left\lfloor 2 \cdot \phi^{-1}\right\rfloor \\
& =1-1 \\
& =0
\end{aligned}
$$

Then, assuming the definition of α holds for S_{n+1}, we must show that it holds for S_{n+1}. But

$$
\alpha\left(S_{n+1}, k\right)=\alpha\left(S_{n} S_{n-1}, k\right)
$$

In the case that $1 \leq k \leq F_{n}$, then $\alpha\left(S_{n} S_{n-1}, k\right)=\alpha\left(S_{n}, k\right)$, and α holds by the inductive hypothesis. Otherwise, in the case that $F_{n}+1 \leq k \leq F_{n+1}$, then $\alpha\left(S_{n} S_{n-1}, k\right)=$ $\alpha\left(S_{n-1}, k-F_{n}\right)=\alpha\left(S_{n-1}, k^{\prime}\right)$ for $1 \leq k^{\prime}=k-F_{n} \leq F_{n-1}$, and α holds again by the inductive hypothesis, and hence the result.
The density of the bs is is $\beta\left(S_{n}\right)$ where

$$
\beta\left(S_{n}\right)= \begin{cases}\left\lfloor\left(F_{n}+1\right) \phi^{-1}\right\rfloor & \text { if } n>1 \\ 0 & \text { otherwise }\end{cases}
$$

for $n>0$, as proven next.
In the case that $n=1, \beta\left(S_{1}\right)=\beta(\mathrm{a})=0$, and $n \ngtr 1$. In the case that $n=2$, $\beta\left(S_{2}\right)=\beta(\mathrm{b})=1$, and

$$
\begin{aligned}
\left\lfloor\left(F_{2}+1\right) \phi^{-1}\right\rfloor & =\left\lfloor(1+1) \phi^{-1}\right\rfloor \\
& =\left\lfloor 2 \cdot \phi^{-1}\right\rfloor \\
& =1
\end{aligned}
$$

In the case that $n=3, \beta\left(S_{3}\right)=\beta(\mathrm{ba})=1$, and

$$
\begin{aligned}
\left\lfloor\left(F_{3}+1\right) \phi^{-1}\right\rfloor & =\left\lfloor(2+1) \phi^{-1}\right\rfloor \\
& =\left\lfloor 3 \cdot \phi^{-1}\right\rfloor \\
& =1
\end{aligned}
$$

Then, assuming the definition of β holds for S_{n+1}, we must show that it holds for S_{n+1}. But

$$
\beta\left(S_{n+1}\right)=\beta\left(S_{n}\right)+\beta\left(S_{n-1}\right)
$$

For either term, β holds by the inductive hypothesis, and hence the result.
[K. B. Stolarsky, Canadian Math. Bull. 19 (1976), 473-482]

- 37. [M35] (R. E. Gaskell, M. J. Whinihan.) Two players compete in the following game: There is a pile containing n chips; the first player removes any number of chips except that he cannot take the whole pile. From then on, the players alternate moves, each person removing one or more chips but not more than twice as many chips as the preceding player has taken. The player who removes the last chip wins. (For example, suppose that $n=11$; player A removes 3 chips; player B may remove up to 6 chips, and he takes 1 . There remain 7 chips; player A may take 1 or 2 chips, and he takes 2 ; player B may remove up to 4 , and he picks up 1. There remain 4 chips; player A now takes 1 ; player B must take at least one chip and player A wins in the following turn.)
What is the best move for the first player to make if there are initially 1000 chips?
The best move for the first player to make if there are initially 1000 chips is to take 13 chips, as explained below.

Definitions. Define the game as follows. Let n_{κ} be the number of chips on the κ th move, $1 \leq \kappa$, $n_{\kappa} \geq 0$, so that n_{1} represents the number of chips started with. Let t_{κ} be the number of chips taken in the κ th move, so that

$$
n_{\kappa}=n_{\kappa-1}-t_{\kappa-1}
$$

for $\kappa>1$. In addition, the rules require that

$$
1 \leq t_{\kappa} \leq q_{\kappa}= \begin{cases}n_{1}-1 & \text { if } \kappa=1 \\ 2 t_{\kappa-1} & \text { otherwise }\end{cases}
$$

for $\kappa \geq 1$, thus $n_{1}>1$ necessarily. The game is won on the κ th move when finally $n_{\kappa+1}=0$. We want to find the winning move(s) for the first player, for κ odd.

Let

$$
n_{\kappa}=\sum_{1 \leq j \leq r_{\kappa}} F_{k_{\kappa, j}}
$$

be the unique Fibonacci representation of $n_{\kappa}, k_{\kappa, j}>k_{\kappa, j+1}+1$ for $1 \leq j<r_{\kappa}$ and $k_{\kappa, r_{\kappa}}>1$; and

$$
\mu\left(n_{\kappa}\right)=F_{k_{\kappa}, r_{\kappa}}
$$

The winning move, if it exists, is to remove $t_{\kappa} \in T_{\kappa}$ chips where

$$
T_{\kappa}=\left\{1 \leq \sum_{j_{1} \leq j \leq r_{\kappa}} F_{k_{\kappa, j}} \leq q_{\kappa} \mid j_{1}=1 \vee F_{k_{\kappa, j_{1}-1}}>2 \sum_{j_{1} \leq j \leq r_{\kappa}} F_{k_{\kappa, j}}\right\}
$$

where $1 \leq j_{1} \leq r_{\kappa}$.
Preliminary Result 37.1. Since $k_{\kappa, r_{\kappa}}>1$,

$$
\begin{aligned}
F_{k_{\kappa, r_{\kappa}}+1}>F_{k_{\kappa, r_{\kappa}}} & \\
& \Longrightarrow \quad F_{k_{\kappa, r_{\kappa}}+1}+F_{k_{\kappa, r_{\kappa}}}>F_{k_{\kappa, r_{\kappa}}}+F_{k_{\kappa, r_{\kappa}}} \\
& \Longrightarrow \quad F_{k_{\kappa, r_{\kappa}}+2}>2 F_{k_{\kappa, r_{\kappa}}} \\
& \Longrightarrow \quad F_{k_{\kappa, r_{\kappa}}+2}>2 \mu\left(\sum_{1 \leq j \leq r_{\kappa}} F_{k_{\kappa, j}}\right) \\
& \Longrightarrow \quad F_{k_{\kappa, r_{\kappa}}+2}>2 \mu\left(n_{\kappa}\right)
\end{aligned}
$$

and since $k_{\kappa, r_{\kappa}}>k_{\kappa, r_{\kappa}+1}+1$,

$$
\begin{aligned}
F_{k_{\kappa, r_{\kappa}}}>F_{k_{\kappa, r_{\kappa}+1}+1} & \Longrightarrow \quad F_{k_{\kappa, r_{\kappa}-1}+1}>F_{k_{\kappa, r_{\kappa}}+2} \\
& \Longrightarrow \quad F_{k_{\kappa, r_{\kappa}-1}} \geq F_{k_{\kappa, r_{\kappa}}+2}
\end{aligned}
$$

so that

$$
\begin{aligned}
2 \mu\left(n_{\kappa}\right) & <F_{k_{\kappa, r_{\kappa}}+2} \\
& \leq F_{k_{\kappa, r_{\kappa}-1}} \\
& =\mu\left(\sum_{1 \leq j \leq r_{\kappa}-1} F_{k_{\kappa, j}}\right) \\
& =\mu\left(\sum_{1 \leq j \leq r_{\kappa}} F_{k_{\kappa, j}}-F_{k_{\kappa, r_{\kappa}}}\right) \\
& =\mu\left(\sum_{1 \leq j \leq r_{\kappa}} F_{k_{\kappa, j}}-\mu\left(\sum_{1 \leq j \leq r_{\kappa}} F_{k_{\kappa, j}}\right)\right) \\
& =\mu\left(n_{\kappa}-\mu\left(n_{\kappa}\right)\right)
\end{aligned}
$$

That is,

$$
\begin{equation*}
\mu\left(n_{\kappa}-\mu\left(n_{\kappa}\right)\right)>2 \mu\left(n_{\kappa}\right) \tag{37.1}
\end{equation*}
$$

Preliminary Result 37.2. First note that for $j>1$ arbitrary, since $F_{j}=F_{j-1}+F_{j-2}$ and $F_{j-2} \leq F_{j-1}$, we have that

$$
F_{j} \leq F_{j-1}+F_{j-1}=2 F_{j-1}
$$

or equivalently that

$$
\begin{aligned}
F_{j} \leq 2 F_{j-1} & \Longleftrightarrow 2 F_{j-1} \geq F_{j} \\
& \Longleftrightarrow F_{j-1} \geq \frac{1}{2} F_{j} \\
& \Longleftrightarrow-F_{j-1} \leq-\frac{1}{2} F_{j}
\end{aligned}
$$

Also note that for $k>j>0$ arbitrary, if $k=2 u+1$ and $j=2 v+1$ so that $(k-1-j) \bmod 2=$ $((2 u+1)-1-(2 v+1)) \bmod 2=(2(u-v)-1) \bmod 2=1$ and $k \bmod 2=1$,

$$
\sum_{v+(k-1-j) \bmod 2 \leq i \leq u} F_{2 i-1+k \bmod 2}=F_{k}-F_{j-1+(k-1-j) \bmod 2}
$$

If $u=v+1 \Longrightarrow k=j+2$,

$$
\begin{aligned}
\sum_{v+(k-1-j) \bmod 2 \leq i \leq u} F_{2 i-1+k \bmod 2} & =\sum_{v+1 \leq i \leq u} F_{2 i-1+k \bmod 2} \\
& =\sum_{v+1 \leq i \leq u} F_{2 i} \\
& =\sum_{u \leq i \leq u} F_{2 i} \\
& =F_{2 u} \\
& =F_{2 u+1}-F_{2 u-1} \\
& =F_{k}-F_{2(v+1)-1} \\
& =F_{k}-F_{2 v+2-1} \\
& =F_{k}-F_{2 v+1} \\
& =F_{k}-F_{j} \\
& =F_{k}-F_{j-1+1} \\
& =F_{k}-F_{j-1+1} \\
& =F_{k}-F_{j-1+(k-1-j) \bmod 2}
\end{aligned}
$$

Assuming

$$
\sum_{v+(k-1-j) \bmod 2 \leq i \leq u} F_{2 i-1+k \bmod 2}=F_{k}-F_{j-1+(k-1-j) \bmod 2}
$$

we must show that

$$
\sum_{v+(k+2-1-j) \bmod 2 \leq i \leq u+1} F_{2 i-1+(k+2) \bmod 2}=F_{k+2}-F_{j-1+(k+2-1-j) \bmod 2} .
$$

But since $(k+2-1-j) \bmod 2=1$ and $(k+2) \bmod 2=1$,

$$
\begin{aligned}
\sum_{v+(k+2-1-j) \bmod 2 \leq i \leq u+1} F_{2 i-1+(k+2) \bmod 2} & =\sum_{v+1 \leq i \leq u+1} F_{2 i-1+(k+2) \bmod 2} \\
& =\sum_{v+1 \leq i \leq u+1} F_{2 i} \\
& =F_{2(u+1)}+\sum_{v+1 \leq i \leq u} F_{2 i} \\
& =F_{2(u+1)}+\sum_{v+1 \leq i \leq u} F_{2 i-1+k \bmod 2} \\
& =F_{2(u+1)}+F_{k}-F_{j-1+(k-1-j) \bmod 2} \\
& =F_{2 u+2}+F_{k}-F_{j-1+(k-1-j) \bmod 2} \\
& =F_{k+1}+F_{k}-F_{j-1+(k-1-j) \bmod 2} \\
& =F_{k+2}-F_{j-1+(k-1-j) \bmod 2} \\
& =F_{k+2}-F_{j-1+(k+2-1-j) \bmod 2}
\end{aligned}
$$

and hence the result for $k=2 u+1$ and $j=2 v+1$.
If $k=2 u$ and $j=2 v$ so that $(k-1-j) \bmod 2=(2 u-1-2 v) \bmod 2=(2(u-v)-1) \bmod 2=1$ and $k \bmod 2=0$,

$$
\sum_{v+(k-1-j) \bmod 2 \leq i \leq u} F_{2 i-1+k \bmod 2}=F_{k}-F_{j-1+(k-1-j) \bmod 2}
$$

If $u=v+1 \Longrightarrow k=j+2$,

$$
\begin{aligned}
\sum_{v+(k-1-j) \bmod 2 \leq i \leq u} F_{2 i-1+k \bmod 2} & =\sum_{v+1 \leq i \leq u} F_{2 i-1+k \bmod 2} \\
& =\sum_{v+1 \leq i \leq u} F_{2 i-1} \\
& =\sum_{u \leq i \leq u} F_{2 i-1} \\
& =F_{2 u-1} \\
& =F_{2 u}-F_{2 u-2} \\
& =F_{k}-F_{2(v+1)-2} \\
& =F_{k}-F_{2 v+2-2} \\
& =F_{k}-F_{2 v} \\
& =F_{k}-F_{j} \\
& =F_{k}-F_{j-1+1} \\
& =F_{k}-F_{j-1+1} \\
& =F_{k}-F_{j-1+(k-1-j) \bmod 2} .
\end{aligned}
$$

Assuming

$$
\sum_{v+(k-1-j) \bmod 2 \leq i \leq u} F_{2 i-1+k \bmod 2}=F_{k}-F_{j-1+(k-1-j) \bmod 2}
$$

we must show that

$$
\sum_{v+(k+2-1-j) \bmod 2 \leq i \leq u+1} F_{2 i-1+(k+2) \bmod 2}=F_{k+2}-F_{j-1+(k+2-1-j) \bmod 2} .
$$

But since $(k+2-1-j) \bmod 2=1$ and $(k+2) \bmod 2=0$,

$$
\begin{aligned}
\sum_{v+(k+2-1-j) \bmod 2 \leq i \leq u+1} F_{2 i-1+(k+2) \bmod 2} & =\sum_{v+1 \leq i \leq u+1} F_{2 i-1+(k+2) \bmod 2} \\
& =\sum_{v+1 \leq i \leq u+1} F_{2 i-1} \\
& =F_{2(u+1)-1}+\sum_{v+1 \leq i \leq u} F_{2 i-1} \\
& =F_{2(u+1)-1}+\sum_{v+1 \leq i \leq u} F_{2 i-1+k \bmod 2} \\
& =F_{2(u+1)-1}+F_{k}-F_{j-1+(k-1-j) \bmod 2} \\
& =F_{2 u+2-1}+F_{k}-F_{j-1+(k-1-j) \bmod 2} \\
& =F_{2 u+1}+F_{k}-F_{j-1+(k-1-j) \bmod 2} \\
& =F_{k+1}+F_{k}-F_{j-1+(k-1-j) \bmod 2} \\
& =F_{k+2}-F_{j-1+(k-1-j) \bmod 2} \\
& =F_{k+2}-F_{j-1+(k+2-1-j) \bmod 2}
\end{aligned}
$$

and hence the result for $k=2 u$ and $j=2 v$.
If $k=2 u+1$ and $j=2 v$ so that $(k-1-j) \bmod 2=(2 u+1-1-2 v) \bmod 2=2(u-v) \bmod 2=0$ and $k \bmod 2=1$,

$$
\sum_{v+(k-1-j) \bmod 2 \leq i \leq u} F_{2 i+1+k \bmod 2}=F_{k}-F_{j-1+(k-1-j) \bmod 2}
$$

If $u=v \Longrightarrow k=j+1$,

$$
\begin{aligned}
\sum_{v+(k-1-j) \bmod 2 \leq i \leq u} F_{2 i-1+k \bmod 2} & =\sum_{v+0 \leq i \leq u} F_{2 i-1+k \bmod 2} \\
& =\sum_{v \leq i \leq u} F_{2 i} \\
& =\sum_{u \leq i \leq u} F_{2 i} \\
& =F_{2 u} \\
& =F_{k}-F_{2 u-1} \\
& =F_{k}-F_{2 v-1} \\
& =F_{k}-F_{j-1} \\
& =F_{k}-F_{j-1+0} \\
& =F_{k}-F_{j-1+(k-1-j) \bmod 2}
\end{aligned} \quad=F_{2 u+1}-F_{2 u-1}
$$

Assuming

$$
\sum_{v+(k-1-j) \bmod 2 \leq i \leq u} F_{2 i-1+k \bmod 2}=F_{k}-F_{j-1+(k-1-j) \bmod 2}
$$

we must show that

$$
\sum_{v+(k+2-1-j) \bmod 2 \leq i \leq u+1} F_{2 i-1+(k+2) \bmod 2}=F_{k+2}-F_{j-1+(k+2-1-j) \bmod 2} .
$$

But since $(k+2-1-j) \bmod 2=0$ and $(k+2) \bmod 2=1$,

$$
\begin{aligned}
\sum_{v+(k-1-j) \bmod 2 \leq i \leq u+1} F_{2 i-1+(k+2) \bmod 2} & =\sum_{v+0 \leq i \leq u+1} F_{2 i-1+(k+2) \bmod 2} \\
& =\sum_{v \leq i \leq u+1} F_{2 i} \\
& =F_{2(u+1)}+\sum_{v \leq i \leq u} F_{2 i} \\
& =F_{2 u+2}+\sum_{v+(k-1-j) \bmod 2 \leq i \leq u} F_{2 i-1+k \bmod 2} \\
& =F_{2 u+2}+F_{k}-F_{j-1+(k-1-j) \bmod 2} \\
& =F_{k+1}+F_{k}-F_{j-1+(k-1-j) \bmod 2} \\
& =F_{k+2}-F_{j-1+(k-1-j) \bmod 2} \\
& =F_{k+2}-F_{j-1+(k+2-1-j) \bmod 2}
\end{aligned}
$$

and hence the result for $k=2 u+1$ and $j=2 v$.
If $k=2 u$ and $j=2 v-1$ so that $(k-1-j) \bmod 2=(2 u-1-(2 v-1)) \bmod 2=2(u-v) \bmod 2=0$ and $k \bmod 2=0$,

$$
\sum_{v+(k-1-j) \bmod 2 \leq i \leq u} F_{2 i+1+k \bmod 2}=F_{k}-F_{j-1+(k-1-j) \bmod 2}
$$

If $u=v \Longrightarrow k=j+1$,

$$
\begin{aligned}
\sum_{v+(k-1-j) \bmod 2 \leq i \leq u} F_{2 i-1+k \bmod 2} & =\sum_{v+0 \leq i \leq u} F_{2 i-1+k \bmod 2} \\
& =\sum_{v \leq i \leq u} F_{2 i-1} \\
& =\sum_{u \leq i \leq u} F_{2 i-1} \\
& =F_{2 u-1} \\
& =F_{k}-F_{2 v-2} \\
& =F_{k}-F_{j-1} \\
& =F_{k}-F_{j-1+0} \\
& =F_{k}-F_{j-1+(k-1-j) \bmod 2}
\end{aligned}
$$

Assuming

$$
\sum_{v+(k-1-j) \bmod 2 \leq i \leq u} F_{2 i-1+k \bmod 2}=F_{k}-F_{j-1+(k-1-j) \bmod 2}
$$

we must show that

$$
\sum_{v+(k+2-1-j) \bmod 2 \leq i \leq u+1} F_{2 i-1+(k+2) \bmod 2}=F_{k+2}-F_{j-1+(k+2-1-j) \bmod 2} .
$$

But since $(k+2-1-j) \bmod 2=0$ and $(k+2) \bmod 2=0$,

$$
\begin{aligned}
\sum_{v+(k-1-j) \bmod 2 \leq i \leq u+1} F_{2 i-1+(k+2) \bmod 2} & =\sum_{v+0 \leq i \leq u+1} F_{2 i-1+(k+2) \bmod 2} \\
& =\sum_{v \leq i \leq u+1} F_{2 i-1} \\
& =F_{2(u+1)-1}+\sum_{v \leq i \leq u} F_{2 i-1} \\
& =F_{2 u+2-1}+\sum_{v+(k-1-j) \bmod 2 \leq i \leq u} F_{2 i-1+k \bmod 2} \\
& =F_{2 u+1}+F_{k}-F_{j-1+(k-1-j) \bmod 2} \\
& =F_{k+1}+F_{k}-F_{j-1+(k-1-j) \bmod 2} \\
& =F_{k+2}-F_{j-1+(k-1-j) \bmod 2} \\
& =F_{k+2}-F_{j-1+(k+2-1-j) \bmod 2}
\end{aligned}
$$

and hence the result for $k=2 u$ and $j=2 v-1$.
Hence, in any and all cases

$$
\begin{aligned}
& \sum_{v+(k-1-j) \bmod 2 \leq i \leq u} F_{2 i+1+k \bmod 2} \\
= & \sum_{\lfloor j / 2\rfloor+(k-1-j) \bmod 2 \leq i \leq\lfloor k / 2\rfloor} F_{2 i+1+k \bmod 2} \\
= & \sum_{2\lfloor j / 2\rfloor+2((k-1-j) \bmod 2)+1+k \bmod 2 \leq i \leq 2\lfloor k / 2\rfloor+1+k \bmod 2} F_{i} \\
= & F_{k}-F_{j-1+(k-1-j) \bmod 2} .
\end{aligned}
$$

Also, if $k=2 u$, so that $k \bmod 2=0$,

$$
\begin{aligned}
F_{k} & =F_{2 u} \\
& =\sum_{0 \leq i \leq u-1} F_{2 i+1} \\
& =\sum_{1 \leq i \leq u} F_{2 i-1} \\
& =\sum_{1 \leq i \leq u}\left(F_{2 i+1}-F_{2 i}\right) \\
& =\sum_{1 \leq i \leq u} F_{2 i+1}-\sum_{1 \leq i \leq u} F_{2 i} \\
& =\sum_{1 \leq i \leq u} F_{2 i+1}-\sum_{0 \leq i \leq u-1} F_{2 i+2} \\
& \leq \sum_{1 \leq i \leq u} F_{2 i+1}-\sum_{1 \leq i \leq u-1} F_{2 i+1} \\
& \leq \sum_{1 \leq i \leq u} F_{2 i+1}-\sum_{1 \leq i \leq v+(k-1-j) \bmod 2-1} F_{2 i+1} \\
& =\sum_{v+(k-1-j) \bmod } F_{2 \leq i \leq 1} \\
& =\sum_{v+(k-1-j) \bmod } F_{2 i+1+k \bmod 2},
\end{aligned}
$$

and if $k=2 u+1$, so that $k \bmod 2=1$,

$$
\begin{aligned}
F_{k} & =F_{2 u+1} \\
& =1+\sum_{1 \leq i \leq u} F_{2 i} \\
& =1+\sum_{1 \leq i \leq u}\left(F_{2 i+1}-F_{2 i-1}\right) \\
& =1+\sum_{1 \leq i \leq u} F_{2 i+1}-\sum_{1 \leq i \leq u} F_{2 i-1} \\
& =1+\sum_{1 \leq i \leq u} F_{2 i+1}-\sum_{0 \leq i \leq u-1} F_{2 i+1} \\
& =\sum_{1 \leq i \leq u} F_{2 i+1}-\sum_{1 \leq i \leq u-1} F_{2 i+1} \sum_{1 \leq i \leq u} F_{2 i+1}-\sum_{1 \leq i \leq v+(k-1-j) \bmod 2-1} F_{2 i+1} \\
& \leq \sum_{v+(k-1-j) \bmod } \sum_{2 \leq i \leq u} F_{2 i+1+k \bmod 2}, \\
& \leq \sum_{v+(k-1-j) \bmod }{ }_{2 \leq i \leq u}
\end{aligned}
$$

so that in either case,

$$
\begin{aligned}
F_{k} & \leq \sum_{v+(k-1-j) \bmod 2 \leq i \leq u} F_{2 i+1+k \bmod 2} \sum_{2\lfloor j / 2\rfloor+2((k-1-j) \bmod 2)+1+k \bmod 2 \leq i \leq 2\lfloor k / 2\rfloor+1+k \bmod 2} F_{i} .
\end{aligned}
$$

Then let $\mu(m)=F_{j}$, so that if $m<F_{k}$,

$$
\begin{aligned}
m & <F_{k} \\
& \leq \sum_{2\lfloor j / 2\rfloor+2((k-1-j) \bmod 2)+1+k \bmod 2 \leq i \leq 2\lfloor k / 2\rfloor+1+k \bmod 2} F_{i} \\
& =-F_{j-1+(k-1-j) \bmod 2+F_{k}}
\end{aligned}
$$

In the case that $(k-1-j) \bmod 2=0$,

$$
\begin{aligned}
-F_{j-1+(k-1-j) \bmod 2} & =-F_{j-1+0} \\
& =-F_{j-1} \\
& \leq-\frac{1}{2} F_{j}
\end{aligned}
$$

and in the case that $(k-1-j) \bmod 2=1$,

$$
\begin{aligned}
-F_{j-1+(k-1-j) \bmod 2} & =-F_{j-1+1} \\
& =-F_{j} \\
& \leq-\frac{1}{2} F_{j+1} \\
& \leq-\frac{1}{2} F_{j}
\end{aligned}
$$

And so, in either case,

$$
\begin{aligned}
-F_{j-1+(k-1-j) \bmod 2}+F_{k} & \\
& \leq-\frac{1}{2} F_{j}+F_{k} \\
& =-\frac{1}{2} \mu(m)+F_{k}
\end{aligned}
$$

if and only if

$$
\begin{aligned}
m \leq-\frac{1}{2} \mu(m)+F_{k} & \Longleftrightarrow \quad-F_{k}+m \leq-\frac{1}{2} \mu(m) \\
& \Longleftrightarrow \quad F_{k}-m \geq \frac{1}{2} \mu(m) \\
& \Longleftrightarrow 2\left(F_{k}-m\right) \geq \mu(m)
\end{aligned}
$$

That is,

$$
\begin{equation*}
\mu(m) \leq 2\left(F_{k}-m\right) \tag{37.2}
\end{equation*}
$$

for $1 \leq m<F_{k}$.

Preliminary Result 37.3. Since $F_{\kappa, r_{\kappa}}=\mu\left(n_{\kappa}\right)>m \geq 1$, by (37.2)

$$
\begin{aligned}
2\left(F_{\kappa, r_{\kappa}}-m\right) & =2\left(\mu\left(n_{\kappa}\right)-m\right) \\
& \geq \mu(m) \\
& =\mu\left(\sum_{1 \leq j \leq r_{\kappa}-1} F_{k_{\kappa, j}}+m\right) \\
& =\mu\left(n_{\kappa}-F_{k_{\kappa, r_{\kappa}}}+m\right) \\
& =\mu\left(n_{\kappa}-\mu\left(n_{\kappa}\right)+m\right)
\end{aligned}
$$

That is,

$$
\begin{equation*}
\mu\left(n_{\kappa}-\mu\left(n_{\kappa}\right)+m\right) \leq 2\left(\mu\left(n_{\kappa}\right)-m\right) \tag{37.3}
\end{equation*}
$$

for $1 \leq m<\mu\left(n_{\kappa}\right)$.
Preliminary Result 37.4. By (37.3), with $m=\mu\left(n_{\kappa}\right)-m^{\prime}$,

$$
\begin{aligned}
\mu\left(n_{\kappa}-\mu\left(n_{\kappa}\right)+\mu\left(n_{\kappa}\right)-m^{\prime}\right) & =\mu\left(n_{\kappa}-m^{\prime}\right) \\
& \leq 2\left(\mu\left(n_{\kappa}\right)-\mu\left(n_{\kappa}\right)-m^{\prime}\right) \\
& =2 m^{\prime}
\end{aligned}
$$

That is,

$$
\begin{equation*}
\mu\left(n_{\kappa}-m\right) \leq 2 m \tag{37.4}
\end{equation*}
$$

for $1 \leq m<\mu\left(n_{\kappa}\right)$.
Proof. In the case that $\mu\left(n_{\kappa}\right) \leq q_{\kappa}$ and $q_{\kappa} \geq n_{\kappa}$, we may win immediately in the κ th move by taking $t_{\kappa}=n_{\kappa}$ chips. But since $n_{\kappa} \geq 1$,

$$
q_{\kappa} \geq n_{\kappa} \geq 1 \quad \Longleftrightarrow \quad 1 \leq \sum_{j_{1} \leq j \leq r_{\kappa}} F_{k_{\kappa, j}} \leq q_{\kappa}
$$

with $j_{1}=1$, so that $n_{\kappa} \in T_{\kappa}$.
Otherwise, if $\mu\left(n_{\kappa}\right) \leq q_{\kappa}$ but $q_{\kappa}<n_{\kappa}$, we may take $t_{\kappa}=\mu\left(n_{\kappa}\right)$ chips in order to leave the other player in an unwinnable state where $\mu\left(n_{\kappa+1}\right)>q_{\kappa+1}$. The move is valid since $\mu\left(n_{\kappa}\right) \geq 1$,

$$
q_{\kappa} \geq \mu\left(n_{\kappa}\right) \geq 1 \quad \Longleftrightarrow \quad 1 \leq \sum_{j_{1} \leq j \leq r_{\kappa}} F_{k_{\kappa, j}} \leq q_{\kappa}
$$

with $j_{1}=r_{\kappa}$, so that $\mu\left(n_{\kappa}\right) \in T_{\kappa}$, since by (37.1),

$$
\begin{aligned}
2 \sum_{j_{1} \leq j \leq r_{\kappa}} F_{k_{\kappa, j}} & =2 \mu\left(n_{\kappa}\right) \\
& <\mu\left(n_{\kappa}-\mu\left(n_{\kappa}\right)\right) \\
& =F_{k_{\kappa, r_{\kappa}-1}}
\end{aligned}
$$

The next state (to be shown to be unwinnable further below) is indeed one where $\mu\left(n_{\kappa+1}\right)>q_{\kappa+1}$, since also by (37.1),

$$
\begin{aligned}
\mu\left(n_{\kappa+1}\right) & \\
& =\mu\left(n_{\kappa}-t_{\kappa}\right) \\
& =\mu\left(n_{\kappa}-\mu\left(n_{\kappa}\right)\right) \\
& >2 \mu\left(n_{\kappa}\right) \\
& =2 t_{\kappa} \\
& =q_{\kappa+1} .
\end{aligned}
$$

In the case that $\mu\left(n_{\kappa}\right)>q_{\kappa}$, there is no winnable move since $q_{\kappa}<n_{\kappa}$; but any move t_{κ} will lead to a winnable state for the next player with $\mu\left(n_{\kappa+1}\right) \leq q_{\kappa+1}$. This follows from (37.4), since $1 \leq t_{\kappa}<\mu\left(n_{\kappa}\right)$ and

$$
\begin{aligned}
\mu\left(n_{\kappa+1}\right) & \\
& =\mu\left(n_{\kappa}-t_{\kappa}\right) \\
& \leq 2 t_{\kappa} \\
& =q_{\kappa+1} .
\end{aligned}
$$

Example. Here we explain how we determined that taking 13 chips is the only winning move for the first player to make if there are initially 1000 chips. In this example,

$$
n_{1}=1000=F_{k_{1,1}}+F_{k_{1, r_{1}}}=F_{k_{1,1}}+F_{k_{1,2}}=F_{16}+F_{7}=987+13
$$

and $\kappa=1$, so that $q=1000-1=999$. For $j_{1}=r_{1}$, since

$$
987=F_{k_{1,1}}=F_{k_{1,2-1}}=F_{k_{1, r_{1}-1}}>2 \sum_{r_{1} \leq j \leq r_{1}} F_{k_{1, j}}=2 F_{k_{1, r_{1}}}=2 \cdot 13=26
$$

we have a single winning move

$$
t_{1} \in T_{1}=\{13\}
$$

hence the unique solution.
[M. J. Whinihan, Fibonacci Quart. 1 (December 1963), 9-12; A. Schwenk, Fibonacci Quarterly 8 (1970), 225-234]
38. [35] Write a computer program that plays the game described in the previous exercise and that plays optimally.

The following Java code plays the game described in exercise 37 , and plays optimally.

```
class Options {
    public Options(String[] arguments) throws NumberFormatException {
        for (int index = 0; index < arguments.length; ++index) {
            switch (arguments[index]) {
                case "-n":
                if ((numberOfChips = Integer.parseInt(arguments[++index])) <= 1) {
                    throw new IllegalArgumentException(
                    String.format(
```



```
                        numberOfChips
                                )
                );
                }
                break;
                case "-p":
                isUserFirst = Integer.parseInt(arguments[++index]) % 2 == 1;
                break;
            default:
                throw new IllegalArgumentException(arguments[index]);
            }
        }
        assert (numberOfChips > 1);
    }
    public int getNumber0fChips() { return number0fChips; }
    public boolean isUserFirst() { return isUserFirst; }
    public int readNumberOfChipsTaken(InputStream in, int numberOfChipsTakeable) {
        int numberOfChipsTaken = (new Scanner(in)).nextInt();
        if ((numberOfChipsTaken < 1) || (numberOfChipsTaken > numberOfChipsTakeable)) {
            throw new IllegalArgumentException(
                String.format(
                        "number 
```

```
                    numberOfChipsTakeable,
                    numberOfChipsTaken
                    )
                );
        }
        return numberOfChipsTaken;
    }
    private int numberOfChips = 2;
    private boolean isUserFirst = true;
}
class State {
    public State(int initialNumberOfChips, boolean isUserFirst) {
        turn = 1;
        isUserTurn = isUserFirst;
        numberOfChips = initialNumberOfChips;
        numberOfChipsTakeable = numberOfChips - 1;
    }
    public void take(int numberOfChipsTaken) {
        assert ((1 <= numberOfChipsTaken) && (numberOfChipsTaken <= numberOfChipsTakeable));
        ++turn;
        isUserTurn = !isUserTurn;
        numberOfChips -= numberOfChipsTaken;
        numberOfChipsTakeable = 2*numberOfChipsTaken;
    }
    public int getTurn() { return turn; }
    public boolean isUserTurn() { return isUserTurn; }
    public int getNumberOfChips() { return numberOfChips; }
    public int getNumberOfChipsTakeable() { return numberOfChipsTakeable; }
    public void writePreSummary(PrintStream out) {
        out.printf("Number\sqcupof\sqcupChips:\sqcup%d%n", numberOfChips);
```



```
        out.printf("-------------------
    }
    public void writeSummary(PrintStream out) {
        out.printf(
```



```
            turn,
            isUserTurn? "User" : "Computer",
            numberOfChips,
            numberOfChipsTakeable
        );
    }
    public void writePostSummary(PrintStream out) {
        out.printf("------%n");
        out.printf("\sqcupTurns: &% d%n", turn - 1);
        out.printf("Winner:ь%s%n", !isUserTurn? "User" : "Computer");
    }
    private int turn;
    private boolean isUserTurn;
    private int numberOfChips;
    private int numberOfChipsTakeable;
}
class FibonacciNumber {
    public FibonacciNumber(int index, int value) {
        this.index = index;
        this.value = value;
    }
    public int getIndex() { return index; }
    public int getValue() { return value; }
    private int index;
    private int value;
}
class FibonacciNumbers {
    public FibonacciNumber get(int index) {
```

```
    assert (index >= 0);
    FibonacciNumber fibonacciNumber = fibonacciNumberCache.get(index);
    if (fibonacciNumber == null) {
        fibonacciNumber = calculate(index);
        fibonacciNumberCache.put(index, fibonacciNumber);
        }
        return fibonacciNumber;
    }
    public FibonacciNumber getLargestLessThanOrEqualTo(int value) {
        int index = 0;
        FibonacciNumber fibonacciNumber = get(index++);
        while (true) {
            FibonacciNumber nextFibonacciNumber = get(index++);
            if (nextFibonacciNumber.getValue() > value) {
                break;
            }
            fibonacciNumber = nextFibonacciNumber;
    }
    return fibonacciNumber;
    }
    protected FibonacciNumber calculate(int index) {
    FibonacciNumber fibonacciNumber;
    switch (index) {
        case 0:
            case 1:
                fibonacciNumber = new FibonacciNumber(index, index);
                break;
            default:
                fibonacciNumber = new FibonacciNumber(
                        index,
                            get(index-1).getValue() + get(index-2).getValue()
            );
            break;
        }
    return fibonacciNumber;
    }
    private Map<Integer, FibonacciNumber> fibonacciNumberCache = new HashMap<>();
}
class FibonacciBaseNumber {
    public FibonacciBaseNumber(FibonacciNumbers fibonacciNumbers, int value) {
        assert (value > 0);
        this.value = value;
        while (value > 0) {
            FibonacciNumber digit = fibonacciNumbers.getLargestLessThanOrEqualTo(value);
            digits.add(digit);
            value -= digit.getValue();
        }
    }
    public int getSum(int fromIndex, int toIndex) {
        int sum = 0;
        for (int index = fromIndex; index <= toIndex; ++index) {
            sum += get(index).getValue();
        }
        return sum;
    }
    public int getValue() { return value; }
    public ( int size() FibonacciNumber get(int index) { {return digits.size(); {rern digits.get(index); }
    public Stream<FibonacciNumber> stream() { return digits.stream(); }
    private int value;
    private List<FibonacciNumber> digits = new ArrayList<FibonacciNumber>();
}
class Solver {
    public Solver(FibonacciNumbers fibonacciNumbers, State state) {
        fibonacciBaseNumber = new FibonacciBaseNumber(fibonacciNumbers, state.getNumberOfChips());
        for (int index = 0; index < fibonacciBaseNumber.size(); ++index) {
            int sum = fibonacciBaseNumber.getSum(index, fibonacciBaseNumber.size() - 1);
            if ((1 <= sum) && (sum <= state.getNumberOfChipsTakeable())) {
```

```
            if ((index == 0) || (fibonacciBaseNumber.get(index - 1).getValue() > 2*sum)) {
                        numberOfChipsToTake.add(sum);
                }
            }
        }
    }
    public int getOptimalNumberOfChipsToTake() {
        int optimalNumberOfChipsToTake = 1;
        if (numberOfChipsToTake.size() > 0) {
        optimalNumberOfChipsToTake = numberOfChipsToTake.first();
    }
    return optimalNumberOfChipsToTake;
    }
    public void writeSummary(PrintStream out) {
    out.printf(
            "[Solve] Chips: 
            fibonacciBaseNumber.getValue(),
            String.join("++\sqcup", fibonacciBaseNumber.stream()
                .map(f -> String.format("F_%d", f.getIndex())).collect(Collectors.toList())
            ),
            String.join("ப+ч", fibonacciBaseNumber.stream()
                    .map(f -> Integer.toString(f.getValue())).collect(Collectors.toList())
            )
    );
    out.printf(
            "[Solve]цOptimal:ь%d;цPossible:ь{%s}%n",
            getOptimalNumberOfChipsToTake(),
            String.join(",\sqcup", numberOfChipsToTake.stream()
                    .map(t -> Integer.toString(t)).collect(Collectors.toList())
            )
    );
    }
    private FibonacciBaseNumber fibonacciBaseNumber;
    private SortedSet<Integer> numberOfChipsToTake = new TreeSet<Integer>();
}
Options options = new Options(arguments);
State state = new State(options.getNumberOfChips(), options.isUserFirst());
FibonacciNumbers fibonacciNumbers = new FibonacciNumbers();
state.writePreSummary (System.out);
do {
    Solver solver = new Solver(fibonacciNumbers, state);
    state.writeSummary(System.out);
    solver.writeSummary(System.out);
    int numberOfChipsTaken;
    if (state.isUserTurn()) {
            System.out.printf("[Input]\sqcupUser|Takes:\sqcup");
            numberOfChipsTaken = options.readNumberOfChipsTaken(System.in, state.getNumberOfChipsTakeable());
    } else {
```



```
            numberOfChipsTaken = solver.getOptimalNumberOfChipsToTake();
            System.out.printf("%d%n", numberOfChipsTaken);
    }
    state.take(numberOfChipsTaken);
} while (state.getNumberOfChips() > 0);
state.writePostSummary(System.out);
```

Sample output for a game starting with 1000 chips where the computer went first ($-\mathrm{n} 1000-\mathrm{p}$ 2), lasting for 351 turns, is shown below.

```
Number of Chips: 1000
Goes First: Computer
[State] Turn: 1 (Computer); Chips: 1000; Takeable: 999
[Solve] Chips: 1000 = F_16 + F_7 = 987 + 13
[Solve] Optimal: 13; Possible: {13}
[Input] Computer Takes: 13
[State] Turn: 2 (User); Chips: 987; Takeable: 26
[Solve] Chips: 987 = F_16 = 987
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 26
[State] Turn: 3 (Computer); Chips: 961; Takeable: 52
[Solve] Chips: 961 = F_15 + F_13 + F-11 + F_ 8 + F_6 = 610 + 233 + 89 + 21 + 8
[Solve] Optimal: 8; Possible: {8, 29}
[Input] Computer Takes: 8
[State] Turn: 4 (User); Chips: 953; Takeable: 16
[Solve] Chips: 953 = F_15 + F_13 + F_11 + F_8 = 610 + 233 + 89 + 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 16
```

[State]	Turn: 5 (Computer) ; Chips: 937; Takeable: 32
[Solve]	Chips: $937=\mathrm{F}_{-1} 15+\mathrm{F}_{-1} 13+\mathrm{F}_{-11}+\mathrm{F}_{-} 5=610+233+89+5$
[Solve]	Optimal: 5; Possible: \{5\}
[Input]	Computer Takes: 5
[State]	Turn: 6 (User); Chips: 932; Takeable: 10
[Solve]	Chips: $932=\mathrm{F}_{-} 15+\mathrm{F}_{-} 13+\mathrm{F}_{-} 11=610+233+89$
[Solve]	Optimal: 1; Possible: \{\}
[Input]	User Takes: 10
[State]	Turn: 7 (Computer) ; Chips: 922; Takeable: 20
[Solve]	Chips: $922=\mathrm{F}_{-15}+\mathrm{F}_{-1} 13+\mathrm{F}_{-10}+\mathrm{F}_{-} 8+\mathrm{F}_{-} 4=610+233+55+21+$
[Solve]	Optimal: 3; Possible: \{3\}
[Input]	Computer Takes: 3
[State]	Turn: 8 (User); Chips: 919; Takeable: 6
[Solve]	Chips: $919=\mathrm{F}_{-1} 15+\mathrm{F}_{-1} 13+\mathrm{F}_{-} 10+\mathrm{F}_{-} 8=610+233+55+21$
[Solve]	Optimal: 1; Possible: \{\}
[Input]	User Takes: 6
[State]	Turn: 9 (Computer) ; Chips: 913; Takeable: 12
[Solve]	Chips: $913=\mathrm{F}_{-15}+\mathrm{F}_{-1} 13+\mathrm{F}_{-10}+\mathrm{F}_{-} 7+\mathrm{F}_{-} 3=610+233+55+13+$
[Solve]	Optimal: 2; Possible: \{2\}
[Input]	Computer Takes: 2
[State]	Turn: 10 (User); Chips: 911; Takeable: 4
[Solve]	Chips: $911=\mathrm{F}_{-} 15+\mathrm{F}_{-1} 13+\mathrm{F}_{-1} 10+\mathrm{F}_{-} 7=610+233+55+13$
[Solve]	Optimal: 1; Possible: \{\}
[Input]	User Takes: 4
[State]	Turn: 11 (Computer); Chips: 907; Takeable: 8
[Solve]	Chips: $907=\mathrm{F}_{-1} 15+\mathrm{F}_{-13}+\mathrm{F}_{-10}+\mathrm{F}_{-6}+\mathrm{F}_{2} 2=610+233+55+8+$
[Solve]	Optimal: 1; Possible: \{1\}
[Input]	Computer Takes: 1
[State]	Turn: 12 (User); Chips: 906; Takeable: 2
[Solve]	Chips: $906=\mathrm{F}_{-1} 15+\mathrm{F}_{-13}+\mathrm{F}_{-1} 10+\mathrm{F}_{-6}=610+233+55+8$
[Solve]	Optimal: 1; Possible: \{\}
[Input]	User Takes: 2
[State]	Turn: 13 (Computer) ${ }^{\text {Chips: }}$ 904; Takeable: 4
[Solve]	Chips: $904=\mathrm{F}_{-1} 15+\mathrm{F}_{-1} 13+\mathrm{F}_{-10}+\mathrm{F}_{-} 5+\mathrm{F}_{4} 2=610+233+55+5+$
[Solve]	Optimal: 1; Possible: \{1\}
[Input]	Computer Takes: 1
[State]	Turn: 14 (User); Chips: 903; Takeable: 2
[Solve]	Chips: $903=\mathrm{F}_{-15}+\mathrm{F}_{-1} 13+\mathrm{F}_{-10}+\mathrm{F}_{-} 5=610+233+55+5$
[Solve]	Optimal: 1; Possible: \{\}
[Input]	User Takes: 2
[State]	Turn: 15 (Computer) ; Chips: 901; Takeable: 4
[Solve]	Chips: $901=\mathrm{F}_{-1} 15+\mathrm{F}_{-13}+\mathrm{F}_{-1} 10+\mathrm{F}_{-} 4=610+233+55+3$
[Solve]	Optimal: 3; Possible: \{3\}
[Input]	Computer Takes: 3
[State]	Turn: 16 (User); Chips: 898; Takeable: 6
[Solve]	Chips: $898=\mathrm{F}_{-1} 15+\mathrm{F}_{-1} 13+\mathrm{F}_{-10}=610+233+55$
[Solve]	Optimal: 1; Possible: \{\}
[Input]	User Takes: 6
[State]	Turn: 17 (Computer) ${ }^{\text {che }}$ Chips: 892; Takeable: 12
[Solve]	Chips: $892=\mathrm{F}_{-1} 15+\mathrm{F}_{-13}+\mathrm{F}_{-} 9+\mathrm{F}_{-} 7+\mathrm{F}_{-} 3=610+233+34+13+$
[Solve]	Optimal: 2; Possible: \{2\}
[Input]	Computer Takes: 2
[State]	Turn: 18 (User); Chips: 890; Takeable: 4
[Solve]	Chips: $890=\mathrm{F}_{-1} 15+\mathrm{F}_{-13}+\mathrm{F}_{-} 9+\mathrm{F}_{-} 7=610+233+34+13$
[Solve]	Optimal: 1; Possible: \{\}
[Input]	User Takes: 4
[State]	Turn: 19 (Computer) ; Chips: 886; Takeable: 8
[Solve]	Chips: $886=\mathrm{F}_{-} 15+\mathrm{F}_{-} 13+\mathrm{F}_{-} 9+\mathrm{F}_{-} 6+\mathrm{F}_{-} 2=610+233+34+8+$
[Solve]	Optimal: 1; Possible: \{1\}
[Input]	Computer Takes: 1
[State]	Turn: 20 (User); Chips: 885; Takeable: 2
[Solve]	Chips: $885=\mathrm{F}_{-15}+\mathrm{F}_{-1} 13+\mathrm{F}_{-} 9+\mathrm{F}_{-6}=610+233+34+8$
[Solve]	Optimal: 1; Possible: \{\}
[Input]	User Takes: 2
[State]	Turn: 21 (Computer) ; Chips: 883; Takeable: 4
[Solve]	Chips: $883=\mathrm{F}_{-} 15+\mathrm{F}_{-1} 13+\mathrm{F}_{-} 9+\mathrm{F}_{-} 5+\mathrm{F}_{-} 2=610+233+34+5+$
[Solve]	Optimal: 1; Possible: \{1\}
[Input]	Computer Takes: 1
[State]	Turn: 22 (User); Chips: 882; Takeable: 2
[Solve]	Chips: $882=\mathrm{F}_{-1} 15+\mathrm{F}_{-1} 13+\mathrm{F}_{-} 9+\mathrm{F}_{-} 5=610+233+34+5$
[Solve]	Optimal: 1; Possible: \{\}
[Input]	User Takes: 2
[State]	Turn: 23 (Computer) ; Chips: 880; Takeable: 4
[Solve]	Chips: $880=\mathrm{F}_{-1} 15+\mathrm{F}_{-} 13+\mathrm{F}_{-} 9+\mathrm{F}_{-} 4=610+233+34+3$
[Solve]	Optimal: 3; Possible: \{3\}
[Input]	Computer Takes: 3
[State]	Turn: 24 (User); Chips: 877; Takeable: 6
[Solve]	Chips: $877=\mathrm{F}_{1} 15+\mathrm{F}_{-13}+\mathrm{F}_{2} 9=610+233+34$
[Solve]	Optimal: 1; Possible: \{\}
[Input]	User Takes: 6
[State]	Turn: 25 (Computer); Chips: 871; Takeable: 12
[Solve]	Chips: $871=\mathrm{F}_{-} 15+\mathrm{F}_{-1} 13+\mathrm{F}_{-} 8+\mathrm{F}_{-} 5+\mathrm{F}_{-} 3=610+233+21+5+2$
[Solve]	Optimal: 2; Possible: \{2, 7\}
[Input]	Computer Takes: 2

```
[State] Turn: 26 (User); Chips: 869; Takeable: 4
[Solve] Chips: 869 = F_15 + F_13 + F_8 + F_5 = 610 + 233 + 21 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 27 (Computer); Chips: 865; Takeable: 8
[Solve] Chips: 865 = F_15 + F_13 + F_8 + F_2 = 610 + 233 + 21 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 28 (User); Chips: 864; Takeable: 2
[Solve] Chips: 864 = F_15 + F_13 + F_8 = 610 + 233 + 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 29 (Computer); Chips: 862; Takeable: 4
[Solve] Chips: 862 = F_15 + F_13 + F_7 + F_5 + F_2 = 610 + 233 + 13 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 30 (User); Chips: 861; Takeable: 2
[Solve] Chips: 861 = F_15 + F_13 + F_7 + F_5 = 610 + 233 + 13 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 31 (Computer); Chips: 859; Takeable: 4
[Solve] Chips: 859 = F_15 + F_13 + F_7 + F_4 = 610 + 233 + 13 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 32 (User); Chips: 856; Takeable: 6
[Solve] Chips: 856 = F_15 + F_13 + F_7 = 610 + 233 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 33 (Computer); Chips: 850; Takeable: 12
[Solve] Chips: 850= F_15 + F_13 + F_5 + F_3 = 610 + 233 + 5 + 2
[Solve] Optimal: 2; Possible: {2, 7}
[Input] Computer Takes: 2
[State] Turn: 34 (User); Chips: 848; Takeable: 4
[Solve] Chips: 848 = F_15 + F_13 + F_5 = 610 + 233 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 35 (Computer); Chips: 844; Takeable: 8
[Solve] Chips: 844 = F_15 + F_13 + F_2 = 610 + 233 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 36 (User); Chips: 843; Takeable: 2
[Solve] Chips: 843 = F_15 + F_13 = 610 + 233
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 37 (Computer); Chips: 841; Takeable: 4
[Solve] Chips: 841 = F_15 + F_12 + F_10 + F_8 + F_6 + F_4 = 610 + 144 + 55 + 21 + 8 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 38 (User); Chips: 838; Takeable: 6
[Solve] Chips: 838 = F_15 + F_12 + F_10 + F_8 + F_6 = 610 + 144 + 55 + 21 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 39 (Computer); Chips: 832; Takeable: 12
[Solve] Chips: 832 = F_15 + F_12 + F_10 + F_ 8 + F_3 = 610 + 144 + 55 + 21 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 40 (User); Chips: 830; Takeable: 4
[Solve] Chips: 830 = F_15 + F_12 + F_10 + F_ 8 = 610 + 144 + 55 + 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 41 (Computer); Chips: 826; Takeable: 8
[Solve] Chips: 826 = F_15 + F_12 + F_10 + F_7 + F_4 + F_2 = 610 + 144 + 55 + 13 + 3 + 1
[Solve] Optimal: 1; Possible: {1, 4}
[Input] Computer Takes: 1
[State] Turn: 42 (User); Chips: 825; Takeable: 2
[Solve] Chips: 825 = F_15 + F_12 + F_10 + F-7 + F_4 = 610 + 144 + 55 + 13 + 3
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 43 (Computer); Chips: 823; Takeable: 4
[Solve] Chips: 823=FF_15 + F_12 + F_10 + F_7 + F_2 = 610 + 144 + 55 + 13 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 44 (User); Chips: 822; Takeable: 2
[Solve] Chips: 822 = F_15 + F_12 + F_10 + F_7 = 610 + 144 + 55 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 45 (Computer); Chips: 820; Takeable: 4
[Solve] Chips: 820 = F_15 + F_12 + F_10 + F_6 + F_4 = 610 + 144 + 55 + 8 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 46 (User); Chips: 817; Takeable: 6
[Solve] Chips: 817 = F_15 + F_12 + F_10 + F_6 = 610 + 144 + 55 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
```

```
[State] Turn: 47 (Computer); Chips: 811; Takeable: 12
[Solve] Chips: 811 = F_15 + F_12 + F_10 + F_3 = 610 + 144 + 55 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 48 (User); Chips: 809; Takeable: 4
[Solve] Chips: 809 = F_15 + F_12 + F_10 = 610 + 144 + 55
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 49 (Computer); Chips: 805; Takeable: 8
[Solve] Chips: 805 = F_15 + F_12 + F_9 + F_7 + F_4 + F_2 = 610 + 144 + 34 + 13 + 3 + 1
[Solve] Optimal: 1; Possible: {1, 4}
[Input] Computer Takes: 1
[State] Turn: 50 (User); Chips: 804; Takeable: 2
[Solve] Chips: 804 = F_15 + F_12 + F_9 + F_7 + F_4 = 610 + 144 + 34 + 13 + 3
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 51 (Computer); Chips: 802; Takeable: 4
[Solve] Chips: 802 = F_15 + F_12 + F_9 + F_7 + F_2 = 610 + 144 + 34 + 13 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 52 (User); Chips: 801; Takeable: 2
[Solve] Chips: 801 = F_15 + F_12 + F_9 + F_7 = 610 + 144 + 34 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 53 (Computer); Chips: 799; Takeable: 4
[Solve] Chips: 799 = F_15 + F_12 + F_9 + F_6 + F_4 = 610 + 144 + 34 + 8 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 54 (User); Chips: 796; Takeable: 6
[Solve] Chips: 796 = F_15 + F_12 + F_9 + F_6 = 610 + 144 + 34 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 55 (Computer); Chips: 790; Takeable: 12
[Solve] Chips: 790 = F_15 + F_12 + F_9 + F_3 = 610 + 144 + 34 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 56 (User); Chips: 788; Takeable: 4
[Solve] Chips: 788 = F_15 + F_12 + F_9 = 610 + 144 + 34
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 57 (Computer); Chips: 784; Takeable: 8
[Solve] Chips: 784 = F_15 + F_12 + F_8 + F_6 + F_2 = 610 + 144 + 21 + 8 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 58 (User); Chips: 783; Takeable: 2
[Solve] Chips: 783 = F_15 + F_12 + F_8 + F_6 = 610 + 144 + 21 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 59 (Computer); Chips: 781; Takeable: 4
[Solve] Chips: 781 = F_15 + F_12 + F_ 8 + F_5 + F_2 = 610 + 144 + 21 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 60 (User); Chips: 780; Takeable: 2
[Solve] Chips: 780 = F_15 + F_12 + F_8 + F_5 = 610 + 144 + 21 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 61 (Computer); Chips: 778; Takeable: 4
[Solve] Chips: 778 = F_15 + F_12 + F_8 + F_4 = 610 + 144 + 21 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 62 (User); Chips: 775; Takeable: 6
[Solve] Chips: 775 = F_15 + F_12 + F_ 8 = 610 + 144 + 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 63 (Computer); Chips: 769; Takeable: 12
[Solve] Chips: 769 = F_15 + F_12 + F_7 + F_3 = 610 + 144 + 13 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 64 (User); Chips: 767; Takeable: 4
[Solve] Chips: 767 = F_15 + F_12 + F_7 = 610 + 144 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 65 (Computer); Chips: 763; Takeable: 8
[Solve] Chips: 763 = F_15 + F_12 + F_6 + F_2 = 610 + 144 + 8 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 66 (User); Chips: 762; Takeable: 2
[Solve] Chips: 762 = F_15 + F_12 + F_6 = 610 + 144 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 67 (Computer); Chips: 760; Takeable: 4
[Solve] Chips: 760 = F_15 + F_12 + F_5 + F_2 = 610 + 144 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
```

```
[State] Turn: 68 (User); Chips: 759; Takeable: 2
[Solve] Chips: 759 = F_15 + F_12 + F_5 = 610 + 144 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 69 (Computer); Chips: 757; Takeable: 4
[Solve] Chips: 757 = F_15 + F_12 + F_4 = 610 + 144 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 70 (User); Chips: 754; Takeable: 6
[Solve] Chips: 754 = F_15 + F_12 = 610 + 144
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 71 (Computer); Chips: 748; Takeable: 12
[Solve] Chips: 748 = F_15 + F_11 + F_9 + F_7 + F_3 = 610 + 89 + 34 + 13 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 72 (User); Chips: 746; Takeable: 4
[Solve] Chips: 746 = F_15 + F_11 + F_9 + F_7 = 610 + 89 + 34 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 73 (Computer); Chips: 742; Takeable: 8
[Solve] Chips: 742 = F_15 + F_11 + F_9 + F_6 + F_2 = 610 + 89 + 34 + 8 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 74 (User); Chips: 741; Takeable: 2
[Solve] Chips: 741 = F_15 + F_11 + F_9 + F_6 = 610 + 89 + 34 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 75 (Computer); Chips: 739; Takeable: 4
[Solve] Chips: 739 = F_15 + F_11 + F_9 + F_5 + F_2 = 610 + 89 + 34 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 76 (User); Chips: 738; Takeable: 2
[Solve] Chips: 738 = F_15 + F_11 + F_9 + F_5 = 610 + 89 + 34 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 77 (Computer); Chips: 736; Takeable: 4
[Solve] Chips: 736 = F_15 + F_11 + F_9 + F_4 = 610 + 89 + 34 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 78 (User); Chips: 733; Takeable: 6
[Solve] Chips: 733 = F_15 + F_11 + F_9 = 610 + 89 + 34
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 79 (Computer); Chips: 727; Takeable: 12
[Solve] Chips: 727 = F_15 + F_11 + F_8 + F_5 + F_3 = 610 + 89 + 21 + 5 + 2
[Solve] Optimal: 2; Possible: {2, 7}
[Input] Computer Takes: 2
[State] Turn: 80 (User); Chips: 725; Takeable: 4
[Solve] Chips: 725 = F_15 + F_11 + F_ 8 + F_5 = 610 + 89 + 21 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 81 (Computer); Chips: 721; Takeable: 8
[Solve] Chips: 721 = F_15 + F_11 + F_8 + F_2 = 610 + 89 + 21 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 82 (User); Chips: 720; Takeable: 2
[Solve] Chips: 720= F_15 + F_11 + F_ 8 = 610 + 89 + 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 83 (Computer); Chips: 718; Takeable: 4
[Solve] Chips: 718=F_15 + F_11 + F_7 + F_5 + F_ 2 = 610 + 89 + 13 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 84 (User); Chips: 717; Takeable: 2
[Solve] Chips: 717 = F_15 + F_11 + F_7 + F_5 = 610 + 89 + 13 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 85 (Computer); Chips: 715; Takeable: 4
[Solve] Chips: 715 = F_15 + F_11 + F_7 + F_4 = 610 + 89 + 13 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 86 (User); Chips: 712; Takeable: 6
[Solve] Chips: 712 = F_15 + F_11 + F_7 = 610 + 89 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 87 (Computer); Chips: 706; Takeable: 12
[Solve] Chips: 706 = F_15 + F_11 + F_5 + F_3 = 610 + 89 + 5 + 2
[Solve] Optimal: 2; Possible: {2, 7}
[Input] Computer Takes: 2
[State] Turn: 88 (User); Chips: 704; Takeable: 4
[Solve] Chips: 704 = F_15 + F_11 + F_5 = 610 + 89 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
```

```
[State] Turn: 89 (Computer); Chips: 700; Takeable: 8
[Solve] Chips: 700 = F_15 + F_11 + F_2 = 610 + 89 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 90 (User); Chips: 699; Takeable: 2
[Solve] Chips: 699 = F_15 + F_11 = 610 + 89
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 91 (Computer); Chips: 697; Takeable: 4
[Solve] Chips: 697 = F_15 + F_10 + F_8 + F_6 + F_4 = 610 + 55 + 21 + 8 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 92 (User); Chips: 694; Takeable: 6
[Solve] Chips: 694 = F_15 + F_10 + F_8 + F_6 = 610 + 55 + 21 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 93 (Computer); Chips: 688; Takeable: 12
[Solve] Chips: 688= F_15 + F_10 + F_ 8 + F_3 = 610 + 55 + 21 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 94 (User); Chips: 686; Takeable: 4
[Solve] Chips: 686 = F_15 + F_10 + F_8 = 610 + 55 + 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 95 (Computer); Chips: 682; Takeable: 8
[Solve] Chips: 682 = F_15 + F_10 + F_7 + F_4 + F_2 = 610 + 55 + 13 + 3 + 1
[Solve] Optimal: 1; Possible: {1, 4}
[Input] Computer Takes: 1
[State] Turn: 96 (User); Chips: 681; Takeable: 2
[Solve] Chips: 681 = F_15 + F_10 + F_7 + F_4 = 610 + 55 + 13 + 3
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 97 (Computer); Chips: 679; Takeable: 4
[Solve] Chips: 679 = F_15 + F_10 + F_7 + F_2 = 610 + 55 + 13 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 98 (User); Chips: 678; Takeable: 2
[Solve] Chips: 678 = F_15 + F_10 + F_7 = 610 + 55 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 99 (Computer); Chips: 676; Takeable: 4
[Solve] Chips: 676 = F_15 + F_10 + F_6 + F_4 = 610 + 55 + 8 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 100 (User); Chips: 673; Takeable: 6
[Solve] Chips: 673 = F_15 + F_10 + F_6 = 610 + 55 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 101 (Computer); Chips: 667; Takeable: 12
[Solve] Chips: 667 = F_15 + F_10 + F_3 = 610 + 55 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 102 (User); Chips: 665; Takeable: 4
[Solve] Chips: 665 = F_15 + F_10 = 610 + 55
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 103 (Computer); Chips: 661; Takeable: 8
[Solve] Chips: 661 = F_15 + F_9 + F_7 + F_4 + F_2 = 610 + 34 + 13 + 3 + 1
[Solve] Optimal: 1; Possible: {1, 4}
[Input] Computer Takes: 1
[State] Turn: 104 (User); Chips: 660; Takeable: 2
[Solve] Chips: 660 = F_15 + F_9 + F_7 + F_4 = 610 + 34 + 13 + 3
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 105 (Computer); Chips: 658; Takeable: 4
[Solve] Chips: 658 = F_15 + F_9 + F_7 + F_2 = 610 + 34 + 13 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 106 (User); Chips: 657; Takeable: 2
[Solve] Chips: 657 = F_15 + F_9 + F_7 = 610 + 34 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 107 (Computer); Chips: 655; Takeable: 4
[Solve] Chips: 655 = F_15 + F_9 + F_6 + F_4 = 610 + 34 + 8 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 108 (User); Chips: 652; Takeable: 6
[Solve] Chips: 652 = F_15 + F_9 + F_6 = 610 + 34 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 109 (Computer); Chips: 646; Takeable: 12
[Solve] Chips: 646 = F_15 + F_9 + F_3 = 610 + 34 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
```

```
[State] Turn: 110 (User); Chips: 644; Takeable: 4
[Solve] Chips: 644 = F_15 + F_9 = 610 + 34
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 111 (Computer); Chips: 640; Takeable: 8
[Solve] Chips: 640 = F_15 + F_8 + F_6 + F_2 = 610 + 21 + 8 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 112 (User); Chips: 639; Takeable: 2
[Solve] Chips: 639 = F_15 + F_8 + F_6 = 610 + 21 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 113 (Computer); Chips: 637; Takeable: 4
[Solve] Chips: 637 = F_15 + F_8 + F_5 + F_2 = 610 + 21 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 114 (User); Chips: 636; Takeable: 2
[Solve] Chips: 636 = F_15 + F_8 + F_5 = 610 + 21 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 115 (Computer); Chips: 634; Takeable: 4
[Solve] Chips: 634 = F_15 + F_8 + F_4 = 610 + 21 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 116 (User); Chips: 631; Takeable: 6
[Solve] Chips: 631 = F_15 + F_ 8 = 610 + 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 117 (Computer); Chips: 625; Takeable: 12
[Solve] Chips: 625 = F_15 + F_7 + F_3 = 610 + 13 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 118 (User); Chips: 623; Takeable: 4
[Solve] Chips: 623 = F_15 + F_7 = 610 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 119 (Computer); Chips: 619; Takeable: 8
[Solve] Chips: 619 = F_15 + F_6 + F_2 = 610 + 8 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 120 (User); Chips: 618; Takeable: 2
[Solve] Chips: 618 = F_15 + F_6 = 610 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 121 (Computer); Chips: 616; Takeable: 4
[Solve] Chips: 616 = F_15 + F_5 + F_2 = 610 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 122 (User); Chips: 615; Takeable: 2
[Solve] Chips: 615 = F_15 + F_5 = 610 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 123 (Computer); Chips: 613; Takeable: 4
[Solve] Chips: 613 = F_15 + F_4 = 610 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 124 (User); Chips: 610; Takeable: 6
[Solve] Chips: 610= F_15 = 610
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 125 (Computer); Chips: 604; Takeable: 12
[Solve] Chips: 604 = F_14 + F_12 + F_10 + F_8 + F_5 + F_3 = 377 + 144 + 55 + 21 + 5 + 2
[Solve] Optimal: 2; Possible: {2, 7}
[Input] Computer Takes: 2
[State] Turn: 126 (User); Chips: 602; Takeable: 4
[Solve] Chips: 602 = F_14 + F_12 + F_10 + F_ 8 + F_5 = 377 + 144 + 55 + 21 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 127 (Computer); Chips: 598; Takeable: 8
[Solve] Chips: 598= F_14 + F_12 + F_10 + F_ 8 + F_2 = 377 + 144 + 55 + 21 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 128 (User); Chips: 597; Takeable: 2
[Solve] Chips: 597 = F_14 + F_12 + F_10 + F_8 = 377 + 144 + 55 + 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 129 (Computer); Chips: 595; Takeable: 4
[Solve] Chips: 595 = F_14 + F_12 + F_10 + F_7 + F_5 + F_2 = 377 + 144 + 55 + 13 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 130 (User); Chips: 594; Takeable: 2
[Solve] Chips: 594 = F_14 + F_12 + F_10 + F_7 + F_5 = 377 + 144 + 55 + 13 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
```

```
[State] Turn: 131 (Computer); Chips: 592; Takeable: 4
[Solve] Chips: 592 = F_14 + F_12 + F_10 + F_7 + F_4 = 377 + 144 + 55 + 13 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 132 (User); Chips: 589; Takeable: 6
[Solve] Chips: 589 = F_14 + F_12 + F_10 + F_7 = 377 + 144 + 55 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 133 (Computer); Chips: 583; Takeable: 12
[Solve] Chips: 583 = F_14 + F_12 + F_10 + F_5 + F_3 = 377 + 144 + 55 + 5 + 2
[Solve] Optimal: 2; Possible: {2, 7}
[Input] Computer Takes: 2
[State] Turn: 134 (User); Chips: 581; Takeable: 4
[Solve] Chips: 581 = F_14 + F_12 + F_10 + F_5 = 377 + 144 + 55 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 135 (Computer); Chips: 577; Takeable: 8
[Solve] Chips: 577 = F_14 + F_12 + F_10 + F_2 = 377 + 144 + 55 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 136 (User); Chips: 576; Takeable: 2
[Solve] Chips: 576 = F_14 + F_12 + F_10 = 377 + 144 + 55
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 137 (Computer); Chips: 574; Takeable: 4
[Solve] Chips: 574=F_14 + F_12 + F_9 + F_7 + F_5 + F_2 = 377 + 144 + 34 + 13 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 138 (User); Chips: 573; Takeable: 2
[Solve] Chips: 573 = F_14 + F_12 + F_9 + F_7 + F_5 = 377 + 144 + 34 + 13 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 139 (Computer); Chips: 571; Takeable: 4
[Solve] Chips: 571 = F_14 + F_12 + F_9 + F_7 + F_4 = 377 + 144 + 34 + 13 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 140 (User); Chips: 568; Takeable: 6
[Solve] Chips: 568 = F_14 + F_12 + F_9 + F_7 = 377 + 144 + 34 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 141 (Computer); Chips: 562; Takeable: 12
[Solve] Chips: 562 = F_14 + F_12 + F_9 + F_5 + F_3 = 377 + 144 + 34 + 5 + 2
[Solve] Optimal: 2; Possible: {2, 7}
[Input] Computer Takes: 2
[State] Turn: 142 (User); Chips: 560; Takeable: 4
[Solve] Chips: 560 = F_14 + F_12 + F_9 + F_5 = 377 + 144 + 34 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 143 (Computer); Chips: 556; Takeable: 8
[Solve] Chips: 556 = F_14 + F_12 + F_9 + F_2 = 377 + 144 + 34 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 144 (User); Chips: 555; Takeable: 2
[Solve] Chips: 555 = F_14 + F_12 + F_9 = 377 + 144 + 34
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 145 (Computer); Chips: 553; Takeable: 4
[Solve] Chips: 553 = F_14 + F_12 + F_8 + F_6 + F_4 = 377 + 144 + 21 + 8 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 146 (User); Chips: 550; Takeable: 6
[Solve] Chips: 550 = F_14 + F_12 + F_ 8 + F_6 = 377 + 144 + 21 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 147 (Computer); Chips: 544; Takeable: 12
[Solve] Chips: 544 = F_14 + F_12 + F_ 8 + F_3 = 377 + 144 + 21 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 148 (User); Chips: 542; Takeable: 4
[Solve] Chips: 542 = F_14 + F_12 + F_8 = 377 + 144 + 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 149 (Computer); Chips: 538; Takeable: 8
[Solve] Chips: 538 = F_14 + F_12 + F_7 + F_4 + F_2 = 377 + 144 + 13 + 3 + 1
[Solve] Optimal: 1; Possible: {1, 4}
[Input] Computer Takes: 1
[State] Turn: 150 (User); Chips: 537; Takeable: 2
[Solve] Chips: 537 = F_14 + F_12 + F_7 + F_4 = 377 + 144 + 13 + 3
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 151 (Computer); Chips: 535; Takeable: 4
[Solve] Chips: 535 = F_14 + F_12 + F_7 + F_2 = 377 + 144 + 13 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
```

```
[State] Turn: 152 (User); Chips: 534; Takeable: 2
[Solve] Chips: 534 = F_14 + F_12 + F_7 = 377 + 144 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 153 (Computer); Chips: 532; Takeable: 4
[Solve] Chips: 532 = F_14 + F_12 + F_6 + F_4 = 377 + 144 + 8 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 154 (User); Chips: 529; Takeable: 6
[Solve] Chips: 529 = F_14 + F_12 + F_6 = 377 + 144 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 155 (Computer); Chips: 523; Takeable: 12
[Solve] Chips: 523 = F_14 + F_12 + F_3 = 377 + 144 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 156 (User); Chips: 521; Takeable: 4
[Solve] Chips: 521 = F_14 + F_12 = 377 + 144
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 157 (Computer); Chips: 517; Takeable: 8
[Solve] Chips: 517 = F_14 + F_11 + F_9 + F_7 + F_4 + F_2 = 377 + 89 + 34 + 13+3+1
[Solve] Optimal: 1; Possible: {1, 4}
[Input] Computer Takes: 1
[State] Turn: 158 (User); Chips: 516; Takeable: 2
[Solve] Chips: 516 = F_14 + F_11 + F_9 + F_7 + F_4 = 377 + 89 + 34 + 13 + 3
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 159 (Computer); Chips: 514; Takeable: 4
[Solve] Chips: 514 = F_14 + F_11 + F_9 + F_7 + F_2 = 377 + 89 + 34 + 13 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 160 (User); Chips: 513; Takeable: 2
[Solve] Chips: 513 = F_14 + F_11 + F_9 + F_7 = 377 + 89 + 34 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 161 (Computer); Chips: 511; Takeable: 4
[Solve] Chips: 511 = F_14 + F_11 + F_9 + F_6 + F_4 = 377 + 89 + 34 + 8 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 162 (User); Chips: 508; Takeable: 6
[Solve] Chips: 508 = F_14 + F_11 + F_9 + F_6 = 377 + 89 + 34 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 163 (Computer); Chips: 502; Takeable: 12
[Solve] Chips: 502 = F_14 + F_11 + F_9 + F_3 = 377 + 89 + 34 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 164 (User); Chips: 500; Takeable: 4
[Solve] Chips: 500 = F_14 + F_11 + F_9 = 377 + 89 + 34
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 165 (Computer); Chips: 496; Takeable: 8
[Solve] Chips: 496 = F_14 + F_11 + F_8 + F_6 + F_2 = 377 + 89 + 21 + 8 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 166 (User); Chips: 495; Takeable: 2
[Solve] Chips: 495 = F_14 + F_11 + F_ 8 + F_6 = 377 + 89 + 21 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 167 (Computer); Chips: 493; Takeable: 4
[Solve] Chips: 493 = F_14 + F_11 + F_ 8 + F_5 + F_2 = 377 + 89 + 21 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 168 (User); Chips: 492; Takeable: 2
[Solve] Chips: 492 = F_14 + F_11 + F_ 8 + F_5 = 377 + 89 + 21 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 169 (Computer); Chips: 490; Takeable: 4
[Solve] Chips: 490 = F_14 + F_11 + F_ 8 + F_4 = 377 + 89 + 21 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 170 (User); Chips: 487; Takeable: 6
[Solve] Chips: 487 = F_14 + F_11 + F_8 = 377 + 89 + 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 171 (Computer); Chips: 481; Takeable: 12
[Solve] Chips: 481 = F_14 + F_11 + F_7 + F_3 = 377 + 89 + 13 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 172 (User); Chips: 479; Takeable: 4
[Solve] Chips: 479 = F_14 + F_11 + F_7 = 377 + 89 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
```

```
[State] Turn: 173 (Computer); Chips: 475; Takeable: 8
[Solve] Chips: 475 = F_14 + F_11 + F_6 + F_2 = 377 + 89 + 8 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 174 (User); Chips: 474; Takeable: 2
[Solve] Chips: 474 = F_14 + F_11 + F_6 = 377 + 89 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 175 (Computer); Chips: 472; Takeable: 4
[Solve] Chips: 472 = F_14 + F_11 + F_5 + F_2 = 377 + 89 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 176 (User); Chips: 471; Takeable: 2
[Solve] Chips: 471 = F_14 + F_11 + F_5 = 377 + 89 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 177 (Computer); Chips: 469; Takeable: 4
[Solve] Chips: 469 = F_14 + F_11 + F_4 = 377 + 89 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 178 (User); Chips: 466; Takeable: 6
[Solve] Chips: 466 = F_14 + F_11 = 377 + 89
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 179 (Computer); Chips: 460; Takeable: 12
[Solve] Chips: 460 = F_14 + F_10 + F_ 8 + F_5 + F_3 = 377 + 55 + 21 + 5 + 2
[Solve] Optimal: 2; Possible: {2, 7}
[Input] Computer Takes: 2
[State] Turn: 180 (User); Chips: 458; Takeable: 4
[Solve] Chips: 458 = F_14 + F_10 + F_ 8 + F_5 = 377 + 55 + 21 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 181 (Computer); Chips: 454; Takeable: 8
[Solve] Chips: 454 = F_14 + F_10 + F_ 8 + F_2 = 377 + 55 + 21 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 182 (User); Chips: 453; Takeable: 2
[Solve] Chips: 453 = F_14 + F_10 + F_8 = 377 + 55 + 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 183 (Computer); Chips: 451; Takeable: 4
[Solve] Chips: 451 = F_14 + F_10 + F_7 + F_5 + F_2 = 377 + 55 + 13 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 184 (User); Chips: 450; Takeable: 2
[Solve] Chips: 450 = F_14 + F_10 + F_7 + F_5 = 377 + 55 + 13 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 185 (Computer); Chips: 448; Takeable: 4
[Solve] Chips: 448= F_14 + F_10 + F_7 + F_4 = 377 + 55 + 13 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 186 (User); Chips: 445; Takeable: 6
[Solve] Chips: 445 = F_14 + F_10 + F_7 = 377 + 55 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 187 (Computer); Chips: 439; Takeable: 12
[Solve] Chips: 439 = F_14 + F_10 + F_5 + F_3 = 377 + 55 + 5 + 2
[Solve] Optimal: 2; Possible: {2, 7}
[Input] Computer Takes: 2
[State] Turn: 188 (User); Chips: 437; Takeable: 4
[Solve] Chips: 437 = F_14 + F_10 + F_5 = 377 + 55 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 189 (Computer); Chips: 433; Takeable: 8
[Solve] Chips: 433 = F_14 + F_10 + F_2 = 377 + 55 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 190 (User); Chips: 432; Takeable: 2
[Solve] Chips: 432 = F_14 + F_10 = 377 + 55
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 191 (Computer); Chips: 430; Takeable: 4
[Solve] Chips: 430 = F_14 + F_9 + F_7 + F_5 + F_2 = 377 + 34 + 13 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 192 (User); Chips: 429; Takeable: 2
[Solve] Chips: 429 = F_14 + F_9 + F_7 + F_5 = 377 + 34 + 13 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 193 (Computer); Chips: 427; Takeable: 4
[Solve] Chips: 427 = F_14 + F_9 + F_7 + F_4 = 377 + 34 + 13 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
```

```
[State] Turn: 194 (User); Chips: 424; Takeable: 6
[Solve] Chips: 424 = F_14 + F_9 + F_7 = 377 + 34 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 195 (Computer); Chips: 418; Takeable: 12
[Solve] Chips: 418 = F_14 + F_9 + F_5 + F_3 = 377 + 34 + 5 + 2
[Solve] Optimal: 2; Possible: {2, 7}
[Input] Computer Takes: 2
[State] Turn: 196 (User); Chips: 416; Takeable: 4
[Solve] Chips: 416 = F_14 + F_9 + F_5 = 377 + 34 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 197 (Computer); Chips: 412; Takeable: 8
[Solve] Chips: 412 = F_14 + F_9 + F_2 = 377 + 34 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 198 (User); Chips: 411; Takeable: 2
[Solve] Chips: 411 = F_14 + F_9 = 377 + 34
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 199 (Computer); Chips: 409; Takeable: 4
[Solve] Chips: 409 = F_14 + F_8 + F_6 + F_4 = 377 + 21 + 8 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 200 (User); Chips: 406; Takeable: 6
[Solve] Chips: 406 = F_14 + F_ 8 + F_6 = 377 + 21 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 201 (Computer); Chips: 400; Takeable: 12
[Solve] Chips: 400 = F_14 + F_8 + F_3 = 377 + 21 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 202 (User); Chips: 398; Takeable: 4
[Solve] Chips: 398 = F_14 + F_8 = 377 + 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 203 (Computer); Chips: 394; Takeable: 8
[Solve] Chips: 394 = F_14 + F_7 + F_4 + F_2 = 377 + 13 + 3 + 1
[Solve] Optimal: 1; Possible: {1, 4}
[Input] Computer Takes: 1
[State] Turn: 204 (User); Chips: 393; Takeable: 2
[Solve] Chips: 393 = F_14 + F_7 + F_4 = 377 + 13 + 3
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 205 (Computer); Chips: 391; Takeable: 4
[Solve] Chips: 391 = F_14 + F_7 + F_2 = 377 + 13 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 206 (User); Chips: 390; Takeable: 2
[Solve] Chips: 390 = F_14 + F_7 = 377 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 207 (Computer); Chips: 388; Takeable: 4
[Solve] Chips: 388= F_14 + F_6 + F_4 = 377 + 8 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 208 (User); Chips: 385; Takeable: 6
[Solve] Chips: 385 = F_14 + F_6 = 377 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 209 (Computer); Chips: 379; Takeable: 12
[Solve] Chips: 379 = F_14 + F_3 = 377 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 210 (User); Chips: 377; Takeable: 4
[Solve] Chips: 377 = F_14=377
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 211 (Computer); Chips: 373; Takeable: 8
[Solve] Chips: 373 = F_13 + F_11 + F_9 + F_7 + F_4 + F_2 = 233 + 89 + 34 + 13 + 3 + 1
[Solve] Optimal: 1; Possible: {1, 4}
[Input] Computer Takes: 1
[State] Turn: 212 (User); Chips: 372; Takeable: 2
[Solve] Chips: 372 = F_13 + F_11 + F_9 + F_7 + F_4 = 233 + 89 + 34 + 13 + 3
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 213 (Computer); Chips: 370; Takeable: 4
[Solve] Chips: 370 = F_13 + F_11 + F_9 + F_7 + F_2 = 233 + 89 + 34 + 13 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 214 (User); Chips: 369; Takeable: 2
[Solve] Chips: 369 = F_13 + F_11 + F_9 + F_7 = 233 + 89 + 34 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
```

```
[State] Turn: 215 (Computer); Chips: 367; Takeable: 4
[Solve] Chips: 367 = F_13 + F_11 + F_9 + F_6 + F_4 = 233 + 89 + 34 + 8 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 216 (User); Chips: 364; Takeable: 6
[Solve] Chips: 364 = F_13 + F_11 + F_9 + F_6 = 233 + 89 + 34 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 217 (Computer); Chips: 358; Takeable: 12
[Solve] Chips: 358 = F_13 + F_11 + F_9 + F_3 = 233 + 89 + 34 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 218 (User); Chips: 356; Takeable: 4
[Solve] Chips: 356 = F_13 + F_11 + F_9 = 233 + 89 + 34
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 219 (Computer); Chips: 352; Takeable: 8
[Solve] Chips: 352 = F_13 + F_11 + F_ 8 + F_6 + F_2 = 233 + 89 + 21 + 8 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 220 (User); Chips: 351; Takeable: 2
[Solve] Chips: 351 = F_13 + F_11 + F_ 8 + F_6 = 233 + 89 + 21 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 221 (Computer); Chips: 349; Takeable: 4
[Solve] Chips: 349 = F_13 + F_11 + F_8 + F_5 + F_2 = 233 + 89 + 21 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 222 (User); Chips: 348; Takeable: 2
[Solve] Chips: 348 = F_13 + F_11 + F_ 8 + F_5 = 233 + 89 + 21 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 223 (Computer); Chips: 346; Takeable: 4
[Solve] Chips: 346 = F_13 + F_11 + F_ 8 + F_4 = 233 + 89 + 21 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 224 (User); Chips: 343; Takeable: 6
[Solve] Chips: 343 = F_13 + F_11 + F_8 = 233 + 89 + 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 225 (Computer); Chips: 337; Takeable: 12
[Solve] Chips: 337 = F-13 + F_11 + F_7 + F_3 = 233 + 89 + 13 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 226 (User); Chips: 335; Takeable: 4
[Solve] Chips: 335 = F_13 + F_11 + F_7 = 233 + 89 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 227 (Computer); Chips: 331; Takeable: 8
[Solve] Chips: 331 = F_13 + F_11 + F_6 + F_2 = 233 + 89 + 8 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 228 (User); Chips: 330; Takeable: 2
[Solve] Chips: 330 = F_13 + F_11 + F_6 = 233 + 89 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 229 (Computer); Chips: 328; Takeable: 4
[Solve] Chips: 328= F_13 + F_11 + F_5 + F_2 = 233 + 89 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 230 (User); Chips: 327; Takeable: 2
[Solve] Chips: 327 = F_13 + F_11 + F_5 = 233 + 89 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 231 (Computer); Chips: 325; Takeable: 4
[Solve] Chips: 325=F_13+F_11 + F_4 = 233 + 89 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 232 (User); Chips: 322; Takeable: 6
[Solve] Chips: 322 = F_13 + F_11 = 233 + 89
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 233 (Computer); Chips: 316; Takeable: 12
[Solve] Chips: 316 = F_13 + F_10 + F_8 + F_5 + F_3 = 233 + 55 + 21 + 5 + 2
[Solve] Optimal: 2; Possible: {2, 7}
[Input] Computer Takes: 2
[State] Turn: 234 (User); Chips: 314; Takeable: 4
[Solve] Chips: 314 = F_13 + F_10 + F_8 + F_5 = 233 + 55 + 21 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 235 (Computer); Chips: 310; Takeable: 8
[Solve] Chips: 310 = F_13 + F_10 + F_8 + F_2 = 233 + 55 + 21 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
```

```
[State] Turn: 236 (User); Chips: 309; Takeable: 2
[Solve] Chips: 309 = F_13 + F_10 + F_8 = 233 + 55 + 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 237 (Computer); Chips: 307; Takeable: 4
[Solve] Chips: 307 = F_13 + F_10 + F_7 + F_5 + F_2 = 233 + 55 + 13 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 238 (User); Chips: 306; Takeable: 2
[Solve] Chips: 306 = F_13 + F_10 + F_7 + F_5 = 233 + 55 + 13 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 239 (Computer); Chips: 304; Takeable: 4
[Solve] Chips: 304 = F-13 + F_10 + F_7 + F_4 = 233 + 55 + 13 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 240 (User); Chips: 301; Takeable: 6
[Solve] Chips: 301 = F_13 + F_10 + F_7 = 233 + 55 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 241 (Computer); Chips: 295; Takeable: 12
[Solve] Chips: 295 = F_13 + F_10 + F_5 + F_3 = 233 + 55 + 5 + 2
[Solve] Optimal: 2; Possible: {2, 7}
[Input] Computer Takes: 2
[State] Turn: 242 (User); Chips: 293; Takeable: 4
[Solve] Chips: 293 = F_13 + F_10 + F_5 = 233 + 55 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 243 (Computer); Chips: 289; Takeable: 8
[Solve] Chips: 289 = F_13 + F_10 + F_2 = 233 + 55 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 244 (User); Chips: 288; Takeable: 2
[Solve] Chips: 288 = F_13 + F_10 = 233 + 55
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 245 (Computer); Chips: 286; Takeable: 4
[Solve] Chips: 286 = F_13 + F_9 + F_7 + F_5 + F_2 = 233 + 34 + 13 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 246 (User); Chips: 285; Takeable: 2
[Solve] Chips: 285 = F_13 + F_9 + F_7 + F_5 = 233 + 34 + 13 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 247 (Computer); Chips: 283; Takeable: 4
[Solve] Chips: 283 = F_13 + F_9 + F_7 + F_4 = 233 + 34 + 13 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 248 (User); Chips: 280; Takeable: 6
[Solve] Chips: 280 = F_13 + F_9 + F_7 = 233 + 34 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 249 (Computer); Chips: 274; Takeable: 12
[Solve] Chips: 274 = F_13 + F_9 + F_5 + F_3 = 233 + 34 + 5 + 2
[Solve] Optimal: 2; Possible: {2, 7}
[Input] Computer Takes: 2
[State] Turn: 250 (User); Chips: 272; Takeable: 4
[Solve] Chips: 272 = F_13 + F_9 + F_5 = 233 + 34 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 251 (Computer); Chips: 268; Takeable: 8
[Solve] Chips: 268 = F_13 + F_9 + F_2 = 233 + 34 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 252 (User); Chips: 267; Takeable: 2
[Solve] Chips: 267 = F_13 + F_9 = 233 + 34
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 253 (Computer); Chips: 265; Takeable: 4
[Solve] Chips: 265=F_13 + F_8 + F_6 + F_4 = 233 + 21 + 8 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 254 (User); Chips: 262; Takeable: 6
[Solve] Chips: 262 = F_13 + F_8 + F_6 = 233 + 21 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 255 (Computer); Chips: 256; Takeable: 12
[Solve] Chips: 256 = F_13 + F_8 + F_3 = 233 + 21 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 256 (User); Chips: 254; Takeable: 4
[Solve] Chips: 254 = F_13 + F_8 = 233 + 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
```

```
[State] Turn: 257 (Computer); Chips: 250; Takeable: 8
[Solve] Chips: 250 = F_13 + F_7 + F_4 + F_2 = 233 + 13 + 3 + 1
[Solve] Optimal: 1; Possible: {1, 4}
[Input] Computer Takes: 1
[State] Turn: 258 (User); Chips: 249; Takeable: 2
[Solve] Chips: 249 = F_13 + F_7 + F_4 = 233 + 13 + 3
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 259 (Computer); Chips: 247; Takeable: 4
[Solve] Chips: 247 = F_13 + F_7 + F_2 = 233 + 13 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 260 (User); Chips: 246; Takeable: 2
[Solve] Chips: 246 = F_13 + F_7 = 233 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 261 (Computer); Chips: 244; Takeable: 4
[Solve] Chips: 244 = F_13 + F_6 + F_4 = 233 + 8 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 262 (User); Chips: 241; Takeable: 6
[Solve] Chips: 241 = F_13 + F_6 = 233 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 263 (Computer); Chips: 235; Takeable: 12
[Solve] Chips: 235 = F_13 + F_3 = 233 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 264 (User); Chips: 233; Takeable: 4
[Solve] Chips: 233 = F_13 = 233
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 265 (Computer); Chips: 229; Takeable: 8
[Solve] Chips: 229 = F_12 + F_10 + F_8 + F_6 + F_2 = 144 + 55 + 21 + 8 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 266 (User); Chips: 228; Takeable: 2
[Solve] Chips: 228 = F_12 + F_10 + F_8 + F_6 = 144 + 55 + 21 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 267 (Computer); Chips: 226; Takeable: 4
[Solve] Chips: 226 = F_12 + F_10 + F_8 + F_5 + F_2 = 144 + 55 + 21 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 268 (User); Chips: 225; Takeable: 2
[Solve] Chips: 225 = F_12 + F_10 + F_ 8 + F_5 = 144 + 55 + 21 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 269 (Computer); Chips: 223; Takeable: 4
[Solve] Chips: 223 = F_12 + F_10 + F_ 8 + F_4 = 144 + 55 + 21 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 270 (User); Chips: 220; Takeable: 6
[Solve] Chips: 220 = F_12 + F_10 + F_8 = 144 + 55 + 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 271 (Computer); Chips: 214; Takeable: 12
[Solve] Chips: 214 = F_12 + F_10 + F_7 + F_3 = 144 + 55 + 13 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 272 (User); Chips: 212; Takeable: 4
[Solve] Chips: 212 = F_12 + F_10 + F_7 = 144 + 55 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 273 (Computer); Chips: 208; Takeable: 8
[Solve] Chips: 208 = F_12 + F_10 + F_6 + F_2 = 144 + 55 + 8 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 274 (User); Chips: 207; Takeable: 2
[Solve] Chips: 207 = F_12 + F_10 + F_6 = 144 + 55 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 275 (Computer); Chips: 205; Takeable: 4
[Solve] Chips: 205 = F_12 + F_10 + F_5 + F_2 = 144 + 55 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 276 (User); Chips: 204; Takeable: 2
[Solve] Chips: 204 = F_12 + F_10 + F_5 = 144 + 55 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 277 (Computer); Chips: 202; Takeable: 4
[Solve] Chips: 202 = F_12 + F_10 + F_4 = 144 + 55 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
```

```
[State] Turn: 278 (User); Chips: 199; Takeable: 6
[Solve] Chips: 199 = F_12 + F_10 = 144 + 55
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 279 (Computer); Chips: 193; Takeable: 12
[Solve] Chips: 193 = F_12 + F_9 + F_7 + F_3 = 144 + 34 + 13 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 280 (User); Chips: 191; Takeable: 4
[Solve] Chips: 191 = F_12 + F_9 + F_7 = 144 + 34 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 281 (Computer); Chips: 187; Takeable: 8
[Solve] Chips: 187 = F_12 + F_9 + F_6 + F_2 = 144 + 34 + 8 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 282 (User); Chips: 186; Takeable: 2
[Solve] Chips: 186 = F_12 + F_9 + F_6 = 144 + 34 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 283 (Computer); Chips: 184; Takeable: 4
[Solve] Chips: 184= F_12 + F_9 + F_5 + F_2 = 144 + 34 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 284 (User); Chips: 183; Takeable: 2
[Solve] Chips: 183 = F_12 + F_9 + F_5 = 144 + 34 +5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 285 (Computer); Chips: 181; Takeable: 4
[Solve] Chips: 181 = F_12 + F_9 + F_4 = 144 + 34 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 286 (User); Chips: 178; Takeable: 6
[Solve] Chips: 178 = F_12 + F_9 = 144 + 34
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 287 (Computer); Chips: 172; Takeable: 12
[Solve] Chips: 172 = F_12 + F_8 + F_5 + F_3 = 144 + 21 + 5 + 2
[Solve] Optimal: 2; Possible: {2, 7}
[Input] Computer Takes: 2
[State] Turn: 288 (User); Chips: 170; Takeable: 4
[Solve] Chips: 170 = F_12 + F_8 + F_5 = 144 + 21 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 289 (Computer); Chips: 166; Takeable: 8
[Solve] Chips: 166 = F_12 + F_8 + F_2 = 144 + 21 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 290 (User); Chips: 165; Takeable: 2
[Solve] Chips: 165 = F_12 + F_8 = 144 + 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 291 (Computer); Chips: 163; Takeable: 4
[Solve] Chips: 163 = F_12 + F_7 + F_5 + F_2 = 144 + 13 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 292 (User); Chips: 162; Takeable: 2
[Solve] Chips: 162 = F_12 + F-7 + F_5 = 144 + 13 +5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 293 (Computer); Chips: 160; Takeable: 4
[Solve] Chips: 160=F_12 + F_7 + F_4 = 144 + 13 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 294 (User); Chips: 157; Takeable: 6
[Solve] Chips: 157 = F_12 + F_7 = 144 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 295 (Computer); Chips: 151; Takeable: 12
[Solve] Chips: 151 = F_12 + F_5 + F_3 = 144 + 5 + 2
[Solve] Optimal: 2; Possible: {2, 7}
[Input] Computer Takes: 2
[State] Turn: 296 (User); Chips: 149; Takeable: 4
[Solve] Chips: 149 = F_12 + F_5 = 144 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 297 (Computer); Chips: 145; Takeable: 8
[Solve] Chips: 145 = F_12 + F_2 = 144 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 298 (User); Chips: 144; Takeable: 2
[Solve] Chips: 144 = F_12 = 144
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
```

```
[State] Turn: 299 (Computer); Chips: 142; Takeable: 4
[Solve] Chips: 142 = F_11 + F_9 + F_7 + F_5 + F_2 = 89 + 34 + 13 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 300 (User); Chips: 141; Takeable: 2
[Solve] Chips: 141 = F_11 + F_9 + F_7 + F_5 = 89 + 34 + 13 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 301 (Computer); Chips: 139; Takeable: 4
[Solve] Chips: 139 = F_11 + F_9 + F_7 + F_4 = 89 + 34 + 13 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 302 (User); Chips: 136; Takeable: 6
[Solve] Chips: 136 = F_11 + F_9 + F_7 = 89 + 34 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 303 (Computer); Chips: 130; Takeable: 12
[Solve] Chips: 130 = F_11 + F_9 + F_5 + F_3 = 89 + 34 + 5 + 2
[Solve] Optimal: 2; Possible: {2, 7}
[Input] Computer Takes: 2
[State] Turn: 304 (User); Chips: 128; Takeable: 4
[Solve] Chips: 128= F_11 + F_9 + F_5 = 89 + 34 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 305 (Computer); Chips: 124; Takeable: 8
[Solve] Chips: 124=F_11 + F_9 + F_2 = 89 + 34 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 306 (User); Chips: 123; Takeable: 2
[Solve] Chips: 123 = F_11 + F_9 = 89 + 34
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 307 (Computer); Chips: 121; Takeable: 4
[Solve] Chips: 121 = F_11 + F_8 + F_6 + F_4 = 89 + 21 + 8 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 308 (User); Chips: 118; Takeable: 6
[Solve] Chips: 118 = F_11 + F_8 + F_6 = 89 + 21 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 309 (Computer); Chips: 112; Takeable: 12
[Solve] Chips: 112 = F_11 + F_8 + F_3 = 89 + 21 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 310 (User); Chips: 110; Takeable: 4
[Solve] Chips: 110 = F_11 + F_8 = 89 + 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 311 (Computer); Chips: 106; Takeable: 8
[Solve] Chips: 106 = F_11 + F_7 + F_4 + F_2 = 89 + 13 + 3 + 1
[Solve] Optimal: 1; Possible: {1, 4}
[Input] Computer Takes: 1
[State] Turn: 312 (User); Chips: 105; Takeable: 2
[Solve] Chips: 105 = F_11 + F_7 + F_4 = 89 + 13 + 3
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 313 (Computer); Chips: 103; Takeable: 4
[Solve] Chips: 103 = F_11 + F_7 + F_2 = 89 + 13 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 314 (User); Chips: 102; Takeable: 2
[Solve] Chips: 102 = F_11 + F_7 = 89 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 315 (Computer); Chips: 100; Takeable: 4
[Solve] Chips: 100=F_11 + F_6 + F_4 = 89 + 8 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 316 (User); Chips: 97; Takeable: 6
[Solve] Chips: 97 = F_11 + F_6 = 89 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 317 (Computer); Chips: 91; Takeable: 12
[Solve] Chips: 91 = F_11 + F_3 = 89 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 318 (User); Chips: 89; Takeable: 4
[Solve] Chips: 89 = F_11 = 89
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 319 (Computer); Chips: 85; Takeable: 8
[Solve] Chips: 85 = F_10 + F_8 + F_6 + F_2 = 55 + 21 + 8 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
```

```
[State] Turn: 320 (User); Chips: 84; Takeable: 2
[Solve] Chips: 84 = F_10 + F_8 + F_6 = 55 + 21 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 321 (Computer); Chips: 82; Takeable: 4
[Solve] Chips: 82 = F_10 + F_8 + F_5 + F_2 = 55 + 21 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 322 (User); Chips: 81; Takeable: 2
[Solve] Chips: 81 = F_10 + F_8 + F_5 = 55 + 21 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 323 (Computer); Chips: 79; Takeable: 4
[Solve] Chips: 79 = F_10 + F_ 8 + F_4 = 55 + 21 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 324 (User); Chips: 76; Takeable: 6
[Solve] Chips: 76 = F_10 + F_8 = 55 + 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 325 (Computer); Chips: 70; Takeable: 12
[Solve] Chips: 70 = F_10 + F_7 + F_3 = 55 + 13 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 326 (User); Chips: 68; Takeable: 4
[Solve] Chips: 68= F-10 + F_7 = 55 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 327 (Computer); Chips: 64; Takeable: 8
[Solve] Chips: 64 = F_10 + F_6 + F_2 = 55 + 8 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 328 (User); Chips: 63; Takeable: 2
[Solve] Chips: 63 = F_10 + F_6 = 55 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 329 (Computer); Chips: 61; Takeable: 4
[Solve] Chips: 61 = F_10 + F_5 + F_2 = 55 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 330 (User); Chips: 60; Takeable: 2
[Solve] Chips: 60 = F_10 + F_5 = 55 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 331 (Computer); Chips: 58; Takeable: 4
[Solve] Chips: 58 = F_10 + F_4 = 55 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 332 (User); Chips: 55; Takeable: 6
[Solve] Chips: 55 = F_10 = 55
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 333 (Computer); Chips: 49; Takeable: 12
[Solve] Chips: 49 = F_9 + F_7 + F_3 = 34 + 13 + 2
[Solve] Optimal: 2; Possible: {2}
[Input] Computer Takes: 2
[State] Turn: 334 (User); Chips: 47; Takeable: 4
[Solve] Chips: 47 = F_9 + F_7 = 34 + 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 335 (Computer); Chips: 43; Takeable: 8
[Solve] Chips: 43 = F_9 + F_6 + F_2 = 34 + 8 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 336 (User); Chips: 42; Takeable: 2
[Solve] Chips: 42 = F_9 + F_6 = 34 + 8
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 337 (Computer); Chips: 40; Takeable: 4
[Solve] Chips: 40 = F_9 + F_5 + F_2 = 34 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 338 (User); Chips: 39; Takeable: 2
[Solve] Chips: 39 = F_9 + F_5 = 34 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 339 (Computer); Chips: 37; Takeable: 4
[Solve] Chips: 37 = F_9 + F_4 = 34 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 340 (User); Chips: 34; Takeable: 6
[Solve] Chips: 34 = F_9 = 34
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
```

```
[State] Turn: 341 (Computer); Chips: 28; Takeable: 12
[Solve] Chips: 28 = F_8 + F_5 + F_3 = 21 + 5 + 2
[Solve] Optimal: 2; Possible: {2, 7}
[Input] Computer Takes: 2
[State] Turn: 342 (User); Chips: 26; Takeable: 4
[Solve] Chips: 26 = F_8 + F_5 = 21 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 343 (Computer); Chips: 22; Takeable: 8
[Solve] Chips: 22 = F_8 + F_2 = 21 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 344 (User); Chips: 21; Takeable: 2
[Solve] Chips: 21 = F_8 = 21
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 345 (Computer); Chips: 19; Takeable: 4
[Solve] Chips: 19 = F_7 + F_5 + F_2 = 13 + 5 + 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
[State] Turn: 346 (User); Chips: 18; Takeable: 2
[Solve] Chips: 18= F_7 + F_5 = 13 + 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 2
[State] Turn: 347 (Computer); Chips: 16; Takeable: 4
[Solve] Chips: 16 = F_7 + F_4 = 13 + 3
[Solve] Optimal: 3; Possible: {3}
[Input] Computer Takes: 3
[State] Turn: 348 (User); Chips: 13; Takeable: 6
[Solve] Chips: 13 = F_7 = 13
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 6
[State] Turn: 349 (Computer); Chips: 7; Takeable: 12
[Solve] Chips: 7 = F_5 + F_3 = 5 + 2
[Solve] Optimal: 2; Possible: {2, 7}
[Input] Computer Takes: 2
[State] Turn: 350 (User); Chips: 5; Takeable: 4
[Solve] Chips: 5 = F_5 = 5
[Solve] Optimal: 1; Possible: {}
[Input] User Takes: 4
[State] Turn: 351 (Computer); Chips: 1; Takeable: 8
[Solve] Chips: 1 = F_2 = 1
[Solve] Optimal: 1; Possible: {1}
[Input] Computer Takes: 1
    Turns: 351
Winner: Computer
```

39. [M24] Find a closed form expression for a_{n}, given that $a_{0}=0, a_{1}=1$, and $a_{n+2}=a_{n+1}+6 a_{n}$ for $n \geq 0$.

We may use the method of generating functions to find a closed form expression for a_{n}. Let

$$
G(z)=\sum_{k \geq 0} a_{k} z^{k}
$$

Then,

$$
\begin{aligned}
\left(1-z-6 z^{2}\right) G(z) & =a_{0} z^{0}+\left(a_{1}-a_{0}\right) z^{1}+\sum_{k \geq 2}\left(a_{k}-a_{k-1}-6 a_{k-2}\right) z^{k} \\
& =a_{0} z^{0}+\left(a_{1}-a_{0}\right) z^{1} \\
& =0+(1-0) z \\
& =z
\end{aligned}
$$

or equivalently, using partial fractions,

$$
\begin{aligned}
G(z) & =\frac{z}{1-z-6 z^{2}} \\
& =\frac{z}{-(3 z-1)(2 z+1)} \\
& =\frac{1}{5} \frac{-1}{-(3 z-1)}+\frac{-1}{5} \frac{1}{2 z+1} \\
& =\frac{1}{5}\left(\frac{1}{1-3 z}-\frac{1}{1-(-2) z}\right) \\
& =\frac{1}{5}\left(\sum_{k \geq 0} 3^{k} z^{k}-\sum_{k \geq 0}(-2)^{k} z^{k}\right) \\
& =\sum_{k \geq 0} \frac{1}{5}\left(3^{k}-(-2)^{k}\right) z^{k}
\end{aligned}
$$

That is,

$$
a_{n}=\left(3^{n}-(-2)^{n}\right) / 5
$$

40. [M25] Solve the recurrence

$$
f(1)=0 ; \quad f(n)=\min _{0<k<n} \max (1+f(k), 2+f(n-k)), \quad \text { for } n>1 .
$$

We have that

$$
f(n)=m
$$

for $0 \leq F_{m}<n \leq F_{m+1}$, as shown below.
In the case that $m=0$,

$$
f(1)=0
$$

and

$$
F_{0}=0<1 \leq 1=F_{1}=F_{0+1}
$$

In the case that $m=1$,

$$
\begin{aligned}
f(2) & =\min _{0<k<2} \max (1+f(k), 2+f(2-k)) \\
& =\max (1+f(1), 2+f(2-1)) \\
& =\max (1,2) \\
& =2
\end{aligned}
$$

and

$$
F_{2}=1<2 \leq 2=F_{3}=F_{2+1}
$$

Then, assuming

$$
f(n)=m
$$

for $F_{m}<n \leq F_{m+1}$, we must show that

$$
f\left(n^{\prime}\right)=m+1
$$

for $F_{m+1}<n^{\prime} \leq F_{m+2}$. Note that since $f\left(n^{\prime}\right)=\min _{0<k<n^{\prime}} \max \left(1+f(k), 2+f\left(n^{\prime}-k\right)\right)$, we must have that $f\left(n^{\prime}\right) \leq \max \left(1+f(k), 2+f\left(n^{\prime}-k\right)\right)$ for $0<k<n^{\prime}$, including for $k=F_{m+1}$, since
$F_{m+1}>0$ and $F_{m+1}<n^{\prime}$ by hypothesis. That is, since $f\left(F_{m+1}\right)=m$ for $F_{m}<F_{m+1} \leq F_{m+1}$, and since $f\left(n^{\prime}-F_{m+1}\right) \leq m-1$ for $0<n^{\prime}-F_{m+1} \leq F_{m}$,

$$
\begin{aligned}
f\left(n^{\prime}\right) & \leq \max \left(1+f\left(F_{m+1}\right), 2+f\left(n^{\prime}-F_{m+1}\right)\right) \\
& =\max (1+m, 2+(m-1)) \\
& =\max (m+1, m+1) \\
& =m+1
\end{aligned}
$$

Then, to see why $f\left(n^{\prime}\right) \nless m+1$, assume it is. Then there must exist some integer $k<n^{\prime}$ such that $f(k)<m$, so that $k \leq F_{m}$; and such that $f\left(n^{\prime}-k\right)<m-1$, so that $n^{\prime}-k \leq F_{m-1}$. Then $k+n^{\prime}-k=n^{\prime}<F_{m}+F_{m-1}=F_{m+1}$. But $F_{m+1}<n^{\prime}$ by the inductive hypothesis. That is, the assumption that $f\left(n^{\prime}\right)<m+1$ leads to a contradiction, allowing us to instead conclude that

$$
f\left(n^{\prime}\right)=m+1
$$

as we needed to show.
[section 6.2.1]

- 41. [M25] (Yuri Matiyasevich, 1990.) Let $f(x)=\left\lfloor x+\phi^{-1}\right\rfloor$. Prove that if $n=F_{k_{1}}+\cdots+F_{k_{r}}$ is the representation of n in the Fibonacci number system of exercise 34 , then $F_{k_{1}+1}+\cdots+F_{k_{r}+1}=f(\phi n)$. Find a similar formula for $F_{k_{1}-1}+\cdots+F_{k_{r}-1}$.

We may prove the equality.

Proposition. $\sum_{1 \leq j \leq r} F_{k_{j}+1}=\left\lfloor\phi^{-1}+\phi \sum_{1 \leq j \leq r} F_{k_{j}}\right\rfloor$ if $k_{j}>k_{j+1}+1$ for $1 \leq j<r$ and $k_{r}>1$.

Proof. Let

$$
n=\sum_{1 \leq j \leq r} F_{k_{j}}
$$

be the unique Fibonacci representation of $n, k_{j}>k_{j+1}+1$ for $1 \leq j<r$ and $k_{r}>1$.
We must show that

$$
\sum_{1 \leq j \leq r} F_{k_{j}+1}=\left\lfloor\phi^{-1}+\phi \sum_{1 \leq j \leq r} F_{k_{j}}\right\rfloor=\left\lfloor\phi n+\phi^{-1}\right\rfloor .
$$

From exercise 11,

$$
\begin{aligned}
\hat{\phi}^{k_{j}+1} & =F_{k_{j}+1} \hat{\phi}+F_{k_{j}} \\
& \Longleftrightarrow \quad F_{k_{j}+1} \hat{\phi}=\hat{\phi}^{k_{j}+1}-F_{k_{j}} \\
\Longleftrightarrow & F_{k_{j}+1}=\hat{\phi}^{k_{j}}-\hat{\phi}^{-1} F_{k_{j}} \\
& \Longleftrightarrow F_{k_{j}+1}=\hat{\phi}^{k_{j}}+\phi F_{k_{j}}
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{1 \leq j \leq r} F_{k_{j}+1} & =\sum_{1 \leq j \leq r}\left(\hat{\phi}^{k_{j}}+\phi F_{k_{j}}\right) \\
& =\sum_{1 \leq j \leq r} \hat{\phi}^{k_{j}}+\sum_{1 \leq j \leq r} \phi F_{k_{j}} \\
& =\sum_{1 \leq j \leq r} \hat{\phi}^{k_{j}}+\phi \sum_{1 \leq j \leq r} F_{k_{j}} \\
& =\sum_{1 \leq j \leq r} \hat{\phi}^{k_{j}}+\phi n \\
& =\phi n+\sum_{1 \leq j \leq r} \hat{\phi}^{k_{j}}
\end{aligned}
$$

But $\hat{\phi}<0$, so if $k_{j}>1$ is even, $\hat{\phi}^{k_{j}}>0$; or if $k_{j}>1$ is odd, $\hat{\phi}^{k_{j}}<0$. This determines the upper and lower bounds of the sum of $\hat{\phi}^{k_{j}}$ as

$$
\sum_{\substack{3 \leq k \\ k \text { odd }}} \hat{\phi}^{k}<\sum_{1 \leq j \leq r} \hat{\phi}^{k_{j}} \leq \sum_{\substack{2 \leq k \\ k \text { even }}} \hat{\phi}^{k}
$$

since $\sum_{\substack{3 \leq k \\ k \text { odd }}} \hat{\phi}^{k}$ is strictly less than $\sum_{1 \leq j \leq r} \hat{\phi}^{k_{j}}$ given an infinite number of terms. But

$$
\begin{aligned}
\sum_{\substack{3 \leq k \\
k \text { odd }}} \hat{\phi}^{k} & =\sum_{\substack{3 \leq k \\
k \text { odd }}}\left(\hat{\phi}^{k+1}-\hat{\phi}^{k-1}\right) \\
& =-\hat{\phi}^{3-1} \\
& =-\hat{\phi}^{2} \\
& =-\left(\hat{\phi}^{1}+\hat{\phi}^{0}\right) \\
& =-\hat{\phi}^{1}-1 \\
& =\phi^{-1}-1
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{\substack{2 \leq k \\
k \text { even }}} \hat{\phi}^{k} & =\sum_{\substack{2 \leq k \\
k \text { even }}}\left(\hat{\phi}^{k+1}-\hat{\phi}^{k-1}\right) \\
& =-\hat{\phi}^{2-1} \\
& =-\hat{\phi}^{1} \\
& =\phi^{-1} .
\end{aligned}
$$

so that

$$
\phi^{-1}-1<\sum_{1 \leq j \leq r} \hat{\phi}^{k_{j}} \leq \phi^{-1}
$$

That is,

$$
\begin{aligned}
\phi^{-1}-1< & \sum_{1 \leq j \leq r} \hat{\phi}^{k_{j}} \leq \phi^{-1} \\
& \Longleftrightarrow \quad \phi n+\phi^{-1}-1<\phi n+\sum_{1 \leq j \leq r} \hat{\phi}^{k_{j}} \leq \phi n+\phi^{-1} \\
& \Longleftrightarrow \quad \phi n+\phi^{-1}-1<\sum_{1 \leq j \leq r} F_{k_{j}+1} \leq \phi n+\phi^{-1} \\
& \Longleftrightarrow \quad \sum_{1 \leq j \leq r} F_{k_{j}+1}=\left\lfloor\phi n+\phi^{-1}\right\rfloor
\end{aligned}
$$

as we needed to show.
The formula for $\sum_{1 \leq j \leq r} F_{k_{j}-1}$ is similar,

$$
\sum_{1 \leq j \leq r} F_{k_{j}-1}=\left\lfloor\phi^{-1}+\phi^{-1} \sum_{1 \leq j \leq r} F_{k_{j}}\right\rfloor
$$

as shown below.

Proposition. $\sum_{1 \leq j \leq r} F_{k_{j}-1}=\left\lfloor\phi^{-1}+\phi^{-1} \sum_{1 \leq j \leq r} F_{k_{j}}\right\rfloor$ if $k_{j}>k_{j+1}+1$ for $1 \leq j<r$ and $k_{r}>1$.

Proof. Let

$$
n=\sum_{1 \leq j \leq r} F_{k_{j}}
$$

be the unique Fibonacci representation of $n, k_{j}>k_{j+1}+1$ for $1 \leq j<r$ and $k_{r}>1$. We must show that

$$
\sum_{1 \leq j \leq r} F_{k_{j}-1}=\left\lfloor\phi^{-1}+\phi^{-1} \sum_{1 \leq j \leq r} F_{k_{j}}\right\rfloor=\left\lfloor\phi^{-1} n+\phi^{-1}\right\rfloor .
$$

From exercise 11,

$$
\begin{aligned}
\hat{\phi}^{k_{j}} & =F_{k_{j}} \hat{\phi}+F_{k_{j}-1} \\
& \Longleftrightarrow F_{k_{j}-1}=\hat{\phi}^{k_{j}}-F_{k_{j}} \hat{\phi} \\
& \Longleftrightarrow \quad F_{k_{j}-1}=\hat{\phi}^{k_{j}}-\hat{\phi} F_{k_{j}} \\
& \Longleftrightarrow F_{k_{j}-1}=\hat{\phi}^{k_{j}}+\phi^{-1} F_{k_{j}}
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{1 \leq j \leq r} F_{k_{j}-1} & =\sum_{1 \leq j \leq r}\left(\hat{\phi}^{k_{j}}+\phi^{-1} F_{k_{j}}\right) \\
& =\sum_{1 \leq j \leq r} \hat{\phi}^{k_{j}}+\sum_{1 \leq j \leq r} \phi^{-1} F_{k_{j}} \\
& =\sum_{1 \leq j \leq r} \hat{\phi}^{k_{j}}+\phi^{-1} \sum_{1 \leq j \leq r} F_{k_{j}} \\
& =\sum_{1 \leq j \leq r} \hat{\phi}^{k_{j}}+\phi^{-1} n \\
& =\phi^{-1} n+\sum_{1 \leq j \leq r} \hat{\phi}^{k_{j}} .
\end{aligned}
$$

But $\hat{\phi}<0$, so if $k_{j}>1$ is even, $\hat{\phi}^{k_{j}}>0$; or if $k_{j}>1$ is odd, $\hat{\phi}^{k_{j}}<0$. This determines the upper and lower bounds of the sum of $\hat{\phi}^{k_{j}}$ as

$$
\sum_{\substack{3 \leq k \\ k \text { odd }}} \hat{\phi}^{k}<\sum_{1 \leq j \leq r} \hat{\phi}^{k_{j}} \leq \sum_{\substack{2 \leq k \\ k \text { even }}} \hat{\phi}^{k},
$$

since $\sum_{\substack{3 \leq k \\ k \text { odd }}} \hat{\phi}^{k}$ is strictly less than $\sum_{1 \leq j \leq r} \hat{\phi}^{k_{j}}$ given an infinite number of terms. But

$$
\begin{aligned}
\sum_{\substack{3 \leq k \\
k \text { odd }}} \hat{\phi}^{k} & =\sum_{\substack{3 \leq k \\
k \text { odd }}}\left(\hat{\phi}^{k+1}-\hat{\phi}^{k-1}\right) \\
& =-\hat{\phi}^{3-1} \\
& =-\hat{\phi}^{2} \\
& =-\left(\hat{\phi}^{1}+\hat{\phi}^{0}\right) \\
& =-\hat{\phi}^{1}-1 \\
& =\phi^{-1}-1
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{\substack{2 \leq k \\
k \text { even }}} \hat{\phi}^{k} & =\sum_{\substack{2 \leq k \\
k \text { even }}}\left(\hat{\phi}^{k+1}-\hat{\phi}^{k-1}\right) \\
& =-\hat{\phi}^{2-1} \\
& =-\hat{\phi}^{1} \\
& =\phi^{-1} .
\end{aligned}
$$

so that

$$
\phi^{-1}-1<\sum_{1 \leq j \leq r} \hat{\phi}^{k_{j}} \leq \phi^{-1}
$$

That is,

$$
\begin{aligned}
\phi^{-1} & -1<\sum_{1 \leq j \leq r} \hat{\phi}^{k_{j}} \leq \phi^{-1} \\
& \Longleftrightarrow \phi^{-1} n+\phi^{-1}-1<\phi^{-1} n+\sum_{1 \leq j \leq r} \hat{\phi}^{k_{j}} \leq \phi^{-1} n+\phi^{-1} \\
& \Longleftrightarrow \phi^{-1} n+\phi^{-1}-1<\sum_{1 \leq j \leq r} F_{k_{j}-1} \leq \phi^{-1} n+\phi^{-1} \\
& \Longleftrightarrow \sum_{1 \leq j \leq r} F_{k_{j}+1}=\left\lfloor\phi^{-1} n+\phi^{-1}\right\rfloor
\end{aligned}
$$

as we needed to show.

[CMath, §6.6]

42. [M26] (D. A. Klarner.) Show that if m and n are nonnegative integers, there is a unique sequence of indices $k_{1} \gg k_{2} \gg \cdots \gg k_{r}$ such that

$$
m=F_{k_{1}}+F_{k_{2}}+\cdots+F_{k_{r}}, \quad n=F_{k_{1}+1}+F_{k_{2}+1}+\cdots+F_{k_{r}+1}
$$

(See exercise 34. The k 's may be negative, and r may be zero.)

We may prove the existence of such a sequence.

Proposition. There exists a unique sequence of indices k_{j}, where $k_{j}>k_{j+1}+1$ for $1 \leq j<r, r \geq 0$, such that $m=\sum_{1 \leq j \leq r} F_{k_{j}}$ and $n=\sum_{1 \leq j \leq r} F_{k_{j}+1}$ if $m, n \geq 0$.

Proof. Let m and n be nonnegative integers. We must show that there exists a unique sequence of indices k_{j}, where $k_{j}>k_{j+1}+1$ for $1 \leq j<r, r \geq 0$, such that

$$
m=\sum_{1 \leq j \leq r} F_{k_{j}}, \quad n=\sum_{1 \leq j \leq r} F_{k_{j}+1}
$$

If such a sequence exists, we must have for all integers N,

$$
\begin{aligned}
m F_{N-1}+n F_{N} & =\sum_{1 \leq j \leq r} F_{k_{j}} F_{N-1}+\sum_{1 \leq j \leq r} F_{k_{j}+1} F_{N} \\
& =\sum_{1 \leq j \leq r}\left(F_{k_{j}} F_{N-1}+F_{k_{j}+1} F_{N}\right) \\
& =\sum_{1 \leq j \leq r} F_{k_{j}+N}
\end{aligned}
$$

In the trivial case that $r=0$, the representation is unique: in particular, the empty one. Otherwise, in the case that $r>0$, let $N=-k_{r}+2$ and $k_{j}^{\prime}=k_{j}+N$ for $1 \leq j \leq r$, so that

$$
\begin{aligned}
k_{j}^{\prime} & =k_{j}+N \\
& =k_{j}-k_{r}+2,
\end{aligned}
$$

and since $k_{j} \geq k_{r}$, so that

$$
k_{j}^{\prime}>1
$$

Then, by exercise 34 , the representation

$$
\sum_{1 \leq j \leq r} F_{k_{j}^{\prime}}
$$

must be unique. Now let N be large enough so that

$$
\left|m \hat{\phi}^{N-1}+n \hat{\phi}^{N}\right|<\phi^{-2}
$$

Since $\phi^{2}=\phi+1$,

$$
\begin{aligned}
\phi^{2} \geq \phi+1 & \Longleftrightarrow \phi \geq \phi^{-1}+1 \\
& \Longleftrightarrow \phi-1 \geq \phi^{-1} \\
& \Longleftrightarrow 1-\phi \leq-\phi^{-1} \\
& \Longleftrightarrow \phi^{-1}-1 \leq-\phi^{-2}
\end{aligned}
$$

and since $\phi>1$,

$$
\begin{aligned}
\phi \geq 1 & \Longleftrightarrow \phi \leq \phi^{2} \\
& \Longleftrightarrow \phi^{-2} \leq \phi^{-1}
\end{aligned}
$$

we have that

$$
\begin{aligned}
\mid m \hat{\phi}^{N-1} & +n \hat{\phi}^{N} \mid<\phi^{-2} \\
\Longleftrightarrow & -\phi^{-2}<m \hat{\phi}^{N-1}+n \hat{\phi}^{N}<\phi^{-2} \\
\Longleftrightarrow & \phi^{-1}-1<m \hat{\phi}^{N-1}+n \hat{\phi}^{N}<\phi^{-2} \\
\Longrightarrow & \phi^{-1}-1<m \hat{\phi}^{N-1}+n \hat{\phi}^{N} \leq \phi^{-1} \\
\Longrightarrow & \phi\left(m F_{N-1}+n F_{N}\right)+\phi^{-1}-1 \\
& <\phi\left(m F_{N-1}+n F_{N}\right)+\left(m \hat{\phi}^{N-1}+n \hat{\phi}^{N}\right) \\
& \leq \phi\left(m F_{N-1}+n F_{N}\right)+\phi^{-1} \\
& \quad \phi\left(m F_{N-1}+n F_{N}\right)+\left(m \hat{\phi}^{N-1}+n \hat{\phi}^{N}\right)=\left\lfloor\phi\left(m F_{N-1}+n F_{N}\right)+\phi^{-1}\right\rfloor .
\end{aligned}
$$

Then

$$
\begin{array}{rlr}
m F_{N}+n F_{N+1} & =m\left(\phi F_{N-1}+\hat{\phi}^{N-1}\right)+n\left(\phi F_{N}+\hat{\phi}^{N}\right) & \\
& =m \phi F_{N-1}+m \hat{\phi}^{N-1}+n \phi F_{N}+n \hat{\phi}^{N} & \\
& =\phi\left(m F_{N-1}+n F_{N}\right)+\left(m \hat{\phi}^{N-1}+n \hat{\phi}^{N}\right) & \\
& =\left\lfloor\phi\left(m F_{N-1}+n F_{N}\right)+\phi^{-1}\right\rfloor & \\
& =\sum_{1 \leq j \leq r} F_{k_{j}+N+1} &
\end{array}
$$

Finally, setting $N=-1$ yields

$$
\begin{aligned}
m F_{-1}+n F_{-1+1} & =m+n F_{0} \\
& =m+0 \\
& =m \\
& =\sum_{1 \leq j \leq r} F_{k_{j}-1+1} \\
& =\sum_{1 \leq j \leq r} F_{k_{j}}
\end{aligned}
$$

and setting $N=0$ yields

$$
\begin{aligned}
m F_{0}+n F_{0+1} & =0+n F_{1} \\
& =n \\
& =\sum_{1 \leq j \leq r} F_{k_{j}+0+1} \\
& =\sum_{1 \leq j \leq r} F_{k_{j}+1}
\end{aligned}
$$

concluding our proof that there exists a unique sequence of indices k_{j}, where $k_{j}>$ $k_{j+1}+1$ for $1 \leq j<r, r \geq 0$, such that

$$
m=\sum_{1 \leq j \leq r} F_{k_{j}}, \quad n=\sum_{1 \leq j \leq r} F_{k_{j}+1}
$$

as we needed to show.

[^0]: ${ }^{1}$ Curtis Cooper, and Robert E. Kennedy, Proof of a Result by Jarden by Generalizing a Proof by Carlitz, Fibonacci Quarterly 33 (1995) 304-311.

[^1]: ${ }^{2}$ See exercise 1.2.6-58.

