Exercises from Section 1.2.9

Tord M. Johnson

May 9, 2021

1. [M12] What is the generating function for the sequence 2,5,13,35, = 2n + 3n?

Let G(z) = n0 2n + 3n zn be the generating function for the sequence 2n + 3n. Then

G(z) = n0 2n + 3n zn = n02nzn + n03nzn by Eq. (2) = n0 2zn + n0 3zn = 1 1 2z + 1 1 3z. by Eq. (5)

2. [M13] Prove Eq. (11).

Proposition. n0an n! zn n0bn n! zn = n0 0knn k akbnk n! zn.

Proof. Let n be an arbitrary nonnegative integer, and ann!, bnn! two arbitrary sequences. We must show that

n0an n! zn n0bn n! zn = n0 0knn k akbnk n! zn.

But

n0an n! zn n0bn n! zn = n0 0knak k! bnk (n k)!zn by Eq. (6) = n0 0kn 1 n! n! k!(n k)!akbnkzn = n0 0kn 1 n! n kakbnkzn = n0 0knn k akbnk n! zn

as we needed to show. □

3. [HM21] Differentiate the generating function (18) for Hn, and compare this with the generating function for k=0nHk. What relation can you deduce?

If we differentiate the generating function for the harmonic numbers Hn, Eq. (18),

G(z) = n0Hnzn = 1 1 zln 1 1 z,

we find that

d dzG(z) = d dz 1 1 zln 1 1 z = d dz 1 1 zln 1 1 z + 1 1 z d dz ln 1 1 z = 1 (1 z)2 ln 1 1 z + 1 1 z d dz ln 1 1 z by Eq. (16) = 1 (1 z)2 ln 1 1 z + 1 1 z d dz 1(1 z) 1(1 z) = 1 (1 z)2 ln 1 1 z + 1 z 1 z 1 (1 z)2 by Eq. (16) = 1 (1 z)2 ln 1 1 z + 1 (1 z)2.

The generating function for 0knHk is

H(z) = n0 0knHkzn = n0 0knHk 1zn = n0Hnzn n01 zn by Eq. (6) = n0Hnzn n0zn = G(z) 1 1 z by Eq. (5) = 1 1 zln 1 1 z 1 1 z = 1 (1 z)2 ln 1 1 z = d dzG(z) 1 (1 z)2 = d dzG(z) d dz 1 1 z by Eq. (16) = d dzG(z) n0(n + 1)zn by Eq. (16) = n0(n + 1)Hn+1zn n0(n + 1)zn by Eq. (14) = n0 (n + 1)Hn+1 (n + 1)zn = n0 (n + 1)Hn+1 1 nzn = n0 (n + 1)Hn+1 n + 1 n + 1 nzn = n0 (n + 1) Hn+1 1 n + 1 nzn = n0 (n + 1)Hn nzn = n0 nHn + Hn nzn.

Then,

0knHk = nHn + Hn n 0knHk Hn = nHn n 0kn1Hk = nHn n 0kn1Hk 0 = nHn n 0kn1Hk H0 = nHn n 1kn1Hk = nHn n,

in agreement with Eq. 1.2.7-(8).

4. [M01] Explain why Eq. (19) is a special case of Eq. (21).

Eq. (19),

(1 + z)r = k0 r kzk,

is a special case of Eq. (21),

xr = k0r kt k r r ktzk,

for t = 0. Then, since xt+1 = xt + z = x = 1 + z,

xr = (1 + z)r = k0r kt k r r ktzk = k0 r k r rzk = k0 r kzk.

5. [M20] Prove Eq. (23) by induction on n.

Proposition. (ez 1)n = n! kk n zk k! .

Proof. Let n be an arbitrary nonnegative integer. We must show that

(ez 1)n = n! kk n zk k! .

If n = 0,

(ez 1)0 = 1 = z0 = 0 0 z0 0! = kk 0 zk k! = 0! kk 0 zk k! .

Then, assuming

(ez 1)n = n! kk n zk k! ,

we must show

(ez 1)n+1 = (n + 1)! k k n + 1 zk k! .

But

(ez 1)n+1 = (ez 1)(ez 1)n = (ez 1)n! kk n zk k! = k0 1 k!zk 1n! kk n zk k! by Eq. (22) = k0 1 k!zk n! kk n zk k! n! kk n zk k! = n! k0 1 k!zk k0 k n 1 k!zk n! kk n zk k! = n! k 1 k! jk j j nzk n! kk n zk k! by Eq. (11) = n! k 1 k! k + 1 n + 1zk n! kk n zk k! by Eq. 1.2.6-(52) = n! k k + 1 n + 1 k n zk k! = n! k(n + 1) k n + 1 zk k! by Eq. 1.2.6-(46) = (n + 1)! k k n + 1 zk k!

as we needed to show. □

6. [HM15] Find the generating function for

0<k<n 1 k(n k);

differentiate it and express the coefficients in terms of harmonic numbers.

The generating function for

0<k<n 1 k(n k)

is

G(z) = n>0 0<k<n 1 k(n k)zn = n>0 0<k<n1 k 1 n kzn = n>0 1 nzn n>0 1 nzn by Eq. (6) = n>0 1 nzn 2 = ln 1 1 z2. by Eq. (17)

Differentiating, we find

d dzG(z) = d dz ln 1 1 z2 = 2ln 1 1 z d dzln 1 1 z = 2ln 1 1 z(1 z) d dzfrac11 z = 2ln 1 1 z(1 z) 1 (1 z)2 by Eq. (16) = 2 1 1 zln 1 1 z = 2 n0Hnzn. by Eq. (18)

Then,

G(z) =0z d dtG(t)dt =0z2 n0Hntndt = 20z n0Hntndt = 2 n1 1 nHn1zn by Eq. (15) = n>0 2 nHn1zn.

And so,

0<k<n 1 k(n k) = 2Hn1n

for n > 0.

7. [M15] Verify all the steps leading to Eq. (38).

Suppose that we have n numbers x1,x2,,xn and we want the sum

hm = 1j1nxj1 j1j2nxj2 jm1jmnxjm = 1j1jmnxj1xjm,

expressed in terms of S1,S2,,Sm, where

Sj = 1knxkj,

the sum of jth powers. First, we establish the identity

1j1jmnxj1xjm = k1,k2,,kn0 k1+k2++kn=n x1k1 x2k2 xnkn . (7.1)

If n = 1,

1j11xj1 = x1 = x11 = k10 k1=1 x1k1 .

Then, assuming

1j1jmnxj1xjm = k1,k2,,kn0 k1+k2++kn=n x1k1 x2k2 xnkn ,

we must show

1j1jm+1n+1xj1xjm+1 = k1,k2,,kn+10 k1+k2++kn+1=n+1 x1k1 x2k2 xn+1kn+1 .

But

1j1jm+1n+1xj1xjm+1 = 1jm+1n+1xjm+1 1j1jmjm+1xj1xjm = 1jm+1n+1xjm+1 k1,k2,,kn0 k1+k2++kn=n x1k1 x2k2 xnkn = k1+1,k2,,kn,00 k1+1+k2++kn+0=n+1 x1k1+1x 2k2 xnkn xn+10 + k1,k2+1,,kn,00 k1+k2+1++kn+0=n+1 x1k1 x2k2+1x nkn xn+10 + + k1,k2,,kn+1,00 k1+k2++kn+1=n+1 x1k1 x2k2 xnkn+1x n+10 + k1,k2,,kn,10 k1+k2++kn+1=n+1 x1k1 x2k2 xnkn xn+11 = k1,k2,,kn+10 k1+k2++kn+1=n+1 x1k1 x2k2 xn+1kn+1 ,

as we needed to show. Now let

G(z) = k0hkzk.

Then

G(z) = k0hkzk = k0 1j1jknxj1xjkzk = k0zk 1j1jknxj1xjk = k0zk k1,k2,,kn0 k1+k2++kn=n x1k1 x2k2 xnkn by (7.1) = 1jn k0xjkzk by Eq. (9) = 1jn k0 xjzk = 1jn 1 1 xjz by Eq. (5).

Taking the logarithm yields

ln G(z) = ln 1jn 1 1 xjz = 1jn ln 1 1 xjz = 1jn k1 1 k xjzk by Eq. (17) = k1 1jnxjkzk k = k1Skzk k .

Finally,

G(z) = eln G(z) = exp k1Skzk k = k1eSkzkk = k1 j0 1 j! Skzk k j by Eq. (22) = k1 j0Skj zk j kjj! = j1 k0 Sjk jkk! zj k = j1 k0 Sjk jkk!zjk = j1 kj0 Sjkj jkj(kj)!zk = n0zn k1,k2,,kn0 k1+k2++kn=n S1k11 1k11(k11)! S2k22 2k22(k22)! Snknn nknn(knn)! by Eq. (9) = n0zn k1,k2,,kn0 k1+2k2++nkn=n S1k1 1k1k1! S2k2 2k2k2! Snkn nknkn!,

and hence Eq. (38).

8. [M23] Find the generating function for p(n), the number of partitions of n.

The number of partitions p(n) corresponds to the number of solutions of the equation k1 + 2k2 + + nkn = n, where kj 0 is the number of js in the partition. For example, for n = 5,

p(5) = k1,k2,,k50 k1+2k2++5k5=5 1 = (1 5 + 2 0 + 3 0 + 4 0 + 5 0)5 + (1 3 + 2 1 + 3 0 + 4 0 + 5 0)5 + (1 1 + 2 2 + 3 0 + 4 0 + 5 0)5 + (1 2 + 2 0 + 3 1 + 4 0 + 5 0)5 + (1 0 + 2 1 + 3 1 + 4 0 + 5 0)5 + (1 1 + 2 0 + 3 0 + 4 1 + 5 0)5 + (1 0 + 2 0 + 3 0 + 4 1 + 5 1)5 = (1 + 1 + 1 + 1 + 1)5 + (1 + 1 + 1 + 2)5 + (1 + 2 + 2)5 + (1 + 1 + 3)5 + (2 + 3)5 + (1 + 4)5 + (5)5 = 7.

The generating function for p(n) is therefore obtained by making all possible combinations from 1 to n available through multiplication, so that the coefficient is the sum count of these combinations, as

G(z) = n0p(n)zn = j1 k0zjk.

For example, for n = 5,

[z5]G(z) = [z5] n0p(n)zn = [z5] j1 k0zjk = [z5] + z15+20+30+40+50 + z13+21+30+40+50 + z11+22+30+40+50 + z12+20+31+40+50 + z10+21+31+40+50 + z11+20+30+41+50 + z10+20+30+41+51 + = [z5] + z1+1+1+1+1 + z1+1+1+2 + z1+2+2 + z1+1+3 + z2+3 + z1+4 + z5 + = [z5]7z5 = 7.

So,

G(z) = n0 k1,k2,,kn0 k1+2k2++nkn=n zn = n0zn k1,k2,,kn0 k1+2k2++nkn=n 1k1 1k2 1kn = n0zn k1,k2,,kn0 k1+k2++kn=n 1k111k221knn = j1 kj01kjzk by Eq. (9) = j1 k0zjk = j1 k0 zj k = j1 1 1 zj by Eq. (5) = 1 n1(1 zn).

That is,

G(z) = n0p(n)zn = n0 k1,k2,,kn0 k1+2k2++nkn=n zn = j1 k0zjk = 1 n1(1 zn).

______________________________________________________________________________________________________________________________

[G. Pólya, Induction and Analogy in Mathematics (Princeton: Princeton University Press, 1954), Chapter 6]

9. [M11] In the notation of Eqs. (34) and (35), what is h4 in terms of S1, S2, S3, and S4?

Suppose that we have n numbers x1,x2,,xn and we want the sum

hm = 1j1nxj1 j1j2nxj2 jm1jmnxjm = 1j1jmnxj1xjm,

expressed in terms of S1,S2,,Sm, where

Sj = 1knxkj,

the sum of jth powers. In particular, h4. But

[z4]G(z) = [z4] k0hkzk by Eq. (35) = [z4] n0zn k1,k2,,kn0 k1+2k2++nkn=n S1k1 1k1k1! S2k2 2k2k2! Snkn nknkn! by Eq. (38) = k1,k2,k3,k40 k1+2k2+3k3+4k4=4 S1k1 1k1k1! S2k2 2k2k2! S3k3 3k3k3! S4k4 4knk4! = S14 144! S20 200! S30 300! S40 400! + S12 122! S21 211! S30 300! S40 400! + S11 111! S20 200! S31 311! S40 400! + S10 100! S22 222! S30 300! S40 400! + S10 100! S20 200! S30 300! S41 411! = S14 144! + S12 122! S21 211! + S11 111! S31 311! + S22 222! + S41 411! = S14 24 + S12 2 S2 2 + S1S3 3 + S22 8 + S4 4 = 1 24S14 + 1 4S12S 2 + 1 8S22 + 1 3S1S3 + 1 4S4.

10. [M25] An elementary symmetric function is defined by the formula

em = 1j1<<jmnxj1xjm.

(This is the same as hm of Eq. (33), except that equal subscripts are not allowed.) Find the generating function for em, and express em in terms of the Sj in Eq. (34). Write out the formulas for e1, e2, e3, and e4.

Suppose that we have n numbers x1,x2,,xn and we want the elementary symmetric function

em = 1j1nxj1 j1<j2nxj2 jm1<jmnxjm = 1j1<<jmnxj1xjm,

expressed in terms of S1,S2,,Sm, where

Sj = 1knxkj,

the sum of jth powers. First, we establish the identity

k0 1j1<<jknxj1xjkzk = 1jn 1 + xjz. (10.1)

If n = 1,

k0 1j11xj1xjkzk = k0x1xjkzk = z0 + x 1z1 = 1 + x1z = 1j1 1 + xjz.

Then, assuming

k0 1j1<<jknxj1xjkzk = 1jn 1 + xjz,

we must show

k0 1j1<<jk+1n+1xj1xjk+1zk+1 = 1jn+1 1 + xjz.

But

k0 1j1<<jk+1n+1xj1xjk+1zk+1 = k0 1jk+1n+1xjk+1z 1j1<<jk<jk+1xj1xjkzk = k0 1jk+1<n+1xjk+1z 1j1<<jk<jk+1xj1xjkzk + k0 jk+1=n+1xjk+1z 1j1<<jk<jk+1xj1xjkzk = k0 1j1<<jknxj1xjkzk + k0xn+1z 1j1<<jknxj1xjkzk = 1 + xn+1z k0 1j1<<jknxj1xjkzk = 1 + xn+1z 1jn 1 + xjz = 1jn+1 1 + xjz,

as we needed to show. Now let

G(z) = k0ekzk.

Then

G(z) = k0ekzk = k0 1j1<<jknxj1xjkzk = 1jn 1 + xjz. by (10.1)

Taking the logarithm yields

ln G(z) = ln 1jn 1 + xjz = 1jn ln 1 + xjz = 1jn k1(1)k+1 k xjzk by Eq. (24) = k1(1)k+1 1jnxjkzk k = k1(1)k+1Skzk k .

Finally,

G(z) = eln G(z) = exp k1(1)k+1Skzk k = k1e(1)k+1S kzkk = k1 j0 1 j! (1)k+1Skzk k j by Eq. (22) = k1 j0 (1)k+1Sk j zk j kjj! = j1 k0 (1)j+1Sj k jkk! zj k = j1 k0 (1)j+1Sj k jkk! zjk = j1 kj0 (1)j+1Sj kj jkj(kj)! zk = n0zn k1,k2,,kn0 k1+k2++kn=n (1)1+1S1 k11 1k11(k11)! (1)2+1S2 k22 2k22(k22)! (1)n+1Sn knn nknn(knn)! by Eq. (9) = n0zn k1,k2,,kn0 k1+2k2++nkn=n S1k1 1k1k1! S2 k2 2k2k2! (1)n+1Sn kn nknkn! ,

and hence

G(z) = k0ekzk = k0 1j1<<jmnxj1xjmzk = n0zn k1,k2,,kn0 k1+2k2++nkn=n S1k1 1k1k1! S2 k2 2k2k2! (1)n+1Sn kn nknkn! .

We then have

e1 = k10 k1=1 S1k1 1k1k1! = S11 111! = S1,
e2 = k1,k20 k1+2k2=2 S1k1 1k1k1! S2 k2 2k2k2! = S12 122! S2 0 200! + S10 100! S2 1 211! = S12 2 + S2 2 = 1 2S12 1 2S2,
e3 = k1,k2,k30 k1+2k2+3k3=3 S1k1 1k1k1! S2 k2 2k2k2! S3k3 3k3k3! = S13 133! S2 0 200! S30 300! + S11 111! S2 1 211! S30 300! + S10 100! S2 0 200! S31 311! = S13 3! + S1 S2 2 + S3 3 = 1 6S13 1 2S1S2 + 1 3S3,

and

e4 = k1,k2,k3,k40 k1+2k2+3k3+4k4=4 S1k1 1k1k1! S2 k2 2k2k2! S3k3 3k3k3! S4 k4 4k4k4! = S14 144! S2 0 200! S30 300! S4 0 400! + S12 122! S2 1 211! S30 300! S4 0 400! + S11 111! S2 0 200! S31 311! S4 0 400! + S10 100! S2 2 222! S30 300! S4 0 400! + S10 100! S2 0 200! S30 300! S4 1 411! = S14 4! + S12 2 S2 2 + S1S3 3 + S22 4 2! + S4 4 = 1 24S14 1 4S12S 2 + 1 3S1S3 + 1 8S22 1 4S4.

______________________________________________________________________________________________________________________________

[Isaac Newton, Arithmetica Universalis (1707); D. J. Struik, Source Book in Mathematics (Harvard University Press, 1969), 94–95]

11. [M25] Equation (39) can also be used to express the S’s in term of the h’s: We find S1 = h1, S2 = 2h2 h12, S3 = 3h3 3h1h2 + h13, etc. What is the coefficient of h1k1h2k2hmkm in this representation of Sm, when k1 + 2k2 + mkm = m?

From Eq. (39),

hn = 1 n 1knSkhnk

for n 1; or equivalently,

hn = 1 n 1knSkhnk nhn = 1knSkhnk nhn = Snh0 + 1kn1Skhnk Snh0 = nhn 1kn1Skhnk Sn = nhn 1kn1Skhnk.

Note that for G(z) = k0hkzk,

k1Skzk k = ln G(z) by Eq. (37) = ln k0hkzk = ln h0z0 + k1hkzk = ln 1 + k1hkzk = m1(1)m+1 m k1hkzk m by Eq. (24) = k1(1)k1 k m1hmzm k.

By the multinomial theorem1 , Eqs. 1.2.6-(42) and 1.2.6-(41),

m1Smzm m = m1(1)m+1 m k1hkzk m = m1(1)m1 m 1kmhkzk m = m1(1)m1 m 1kmhkzk m = m1(1)m1 m k1,k2,,km0 k1+k2++km=m m k1,k2,,km 1jm hjzj kj = m1(1)m1 m k1,k2,,km0 k1+k2++km=m m! k1!k2!km! 1jm hjzj kj = m1 k1,k2,,km0 k1+k2++km=m (1)m1(m 1)! k1!k2!km! 1jmhjkj zjkj = m1 k1,k2,,km0 k1+k2++km=m (1)k1+k2++km1(k1 + k2 + + km 1)! k1!k2!km! h1k1 h2k2 hmkm zk1+2k2++mkm = m1 k1,k2,,km0 k1+2k2++mkm=m (1)k1+k2++km1(k1 + k2 + + km 1)! k1!k2!km! h1k1 h2k2 hmkm zm.

Hence,

m1Smzm = m1 k1,k2,,km0 k1+2k2++mkm=m (1)k1+k2++km1m(k1 + k2 + + km 1)! k1!k2!km! h1k1 h2k2 hmkm zm.

That is, the coefficient of h1k1h2k2hmkm in this representation of Sm, when k1 + 2k2 + mkm = m is

(1)k1+k2++km1m(k 1 + k2 + + km 1)!k1!k2!km!.

______________________________________________________________________________________________________________________________

[Albert Girard, Invention Nouvelle en Algébre (Amsterdam: 1629)]

12. [M20] Suppose we have a doubly scripted sequence amn for m,n = 0,1,; show how this double sequence can be represented by a single generating function of two variables, and determine the generating function for n m.

Given a sequence am,n = n m for m,n 0, we find the generating function to be

m,n0am,nwmzn = m,n0 n mwmzn = n0 m0 n mwmzn = n0(1 + w)nzn by Eq. (19) = n0(z + wz)n = 1(1 (z + wz)) by Eq. (5) = 1(1 z wz).

13. [HM22] The Laplace transform of a function f(x) is the function

Lf(s) =0estf(t)dt.

Given that a0,a1,a2, is an infinite sequence having a convergent generating function, let f(x) be the step function kak[0 k x]. Express the Laplace transform of f(x) in terms of the generating function G for this sequence.

Given the step function f(x) = 0kxak and generating function G(z) of an as

G(z) = n0anzn,

we have that

Lf(s) =0estf(t)dt = n0nn+1estf(t)dt = n0nn+1f(t)estdt = n0nn+1 0knakestdt = n0 0knnn+1a kestdt = n0 0knaknn+1estdt = n0f(n)nn+1estdt = n0f(n) 1 s est nn+1 = n0f(n)( 1 s es(n+1) 1 s esn) = n0f(n)(esn es(n+1))s = n0f(n)esns n0f(n)es(n+1)s = n0f(n)esns n1f(n 1)esns = n0f(n)esns n0f(n 1)esns = n0(f(n) f(n 1))esns = n0anesns = n0an(es)ns = G(es)s.

14. [HM21] Prove Eq. (13).

We may prove Eq. (13).

Proposition. n>0 nmodm=r anzn = 1 m 0k<mωkrG(ωkz).

Proof. Let m and r be arbitrary integers such that 0 r < m, and let ω = e2πim = cos (2πm) + isin (2πm). If G(z) is the generating function for an = a0,a1,, we must show that

n>0 nmodm=r anzn = 1 m 0k<mωkrG(ωkz).

But given ω = e2πim and the sum of the geometric progression for n restricted such that n mod m = r,

n>0 nmodm=r anzn = n>0 nr0(modm) anzn = n>0[n r 0(modm)]anzn = m m n>0[n r 0(modm)]anzn = 1 m n>0anzn[n r 0(modm)]m = 1 m n>0anzn[n r 0(modm)] 0k<m1k = 1 m n>0anzn 0k<m(1(nr)m)k = 1 m n>0anzn 0k<m((1)2(nr)m)k = 1 m n>0anzn 0k<m(e2πi(nr)m)k = 1 m n>0anzn 0k<m(ωnr)k = 1 m n>0anzn 0k<mωk(nr) = 1 m n>0anzn 0k<mωk(nr) = 1 m n>0anzn 0k<mωknkr = 1 m n>0anzn 0k<mωkrωkn = 1 m 0k<mωkr n>0anωknzn = 1 m 0k<mωkr n>0an(ωkz)n = 1 m 0k<mωkrG(ωkz),

and hence the result. □

______________________________________________________________________________________________________________________________

[exercise 1.2.6-38]

15. [M28] By considering H(w) = n0Gn(z)wn, find a closed form for the generating function

Gn(z) = k=0nn k k zk = k=0n2k n 1 k (z)k.

In the case that n > 0, we have that

Gn(z) = 0knn k k zk = 0kn n k 1 k + n k 1 k 1 zk by 1.2.6-(9) = 0knn k 1 k zk + 0knn k 1 k 1 zk = n n 1 n zn + n n 1 n 1 zn + 0kn1n k 1 k zk + 0kn1n k 1 k 1 zk = 0 + 0 + 0kn1n k 1 k zk + 0kn1n k 1 k 1 zk = 0kn1n k 1 k zk + 0kn1n k 1 k 1 zk = 0kn1n k 1 k zk + 1kn1n k 1 k 1 zk + n 1 1 z0 = 0kn1n k 1 k zk + 1kn1n k 1 k 1 zk + 0 = 0kn1n k 1 k zk + 1kn1n k 1 k 1 zk = 0kn1n k 1 k zk + 0kn2n k 2 k zk+1 = 0kn1(n 1) k k zk + z 0kn2(n 2) k k zk = 0kn1(n 1) k k zk + z 0kn2(n 2) k k zk + δn,0; = Gn1(z) + zGn2(z) + δn,0;

and in the case that n = 0, we have that

Gn(z) = 0k00 k k zk = 0 0 0 z0 = 0 0z0 = 1 = δn,0 = 0kn1(n 1) k k zk + z 0kn2(n 2) k k zk + δn,0 = Gn1(z) + zGn2(z) + δn,0.

That is, in either case,

Gn(z) = Gn1(z) + zGn2(z) + δn,0.

Then,

H(w) = n0Gn(z)wn = G0(z) + G1(z)w + G2(z)w2 + , wH(w) = G0(z)w + G1(z)w2 + G 2(z)w3 + , zw2H(w) = zG 0(z)w2 + zG 1(z)w3 + zG 2(z)w4 + ;

so that

H(w) wH(w) zw2H(w) = H(w)(1 w zw2) = G0(z) + (G1(z) G0(z))w + (G2(z) (G1(z) + zG0(z)))w2 + = G0(z) + (G1(z) G0(z))w + (G2(z) (G1(z) + zG0(z) + δ2,0))w2 + = G0(z) + (G1(z) G0(z))w + (G2(z) G2(z))w2 + = G0(z) + (G1(z) G0(z))w = G0(z) + G1(z)w G0(z)w = G0(z) + (G0(z) + zG1(z) + δ1,0)w G0(z)w = G0(z) + G0(z)w G0(z)w = G0(z), = 1,

or equivalently, so that

H(w) = 1(1 w zw2).

Then, if z 1 4,

H(w) = n0Gn(z)wn = 1(1 w zw2) = 1 1 2 2w 1+4z 2 w + 1+4z 2 w 4z 4 w2 = 1 1 1 2w 1+4z 2 w 1 2w + 1+4z 2 w + 114z 4 w2 = 1 1 1 2(1 1 + 4z)w 1 2(1 + 1 + 4z)w + 1 4(1 + 1 + 4z 1 + 4z (1 + 4z))w2 = 1 1 1 2(1 1 + 4z)w 1 2(1 + 1 + 4z)w + 1 4(1 + 1 + 4z)(1 1 + 4z)w2 = 4x2 4x2 2x2(1 1 + 4z)w 2x2(1 + 1 + 4z)w + x2(1 + 1 + 4z)(1 1 + 4z)w2 = (1 + 1 + 4z)(21 + 4z 1 + 4z(1 1 + 4z)w) (21 + 4z 1 + 4z(1 + 1 + 4z)w)(21 + 4z 1 + 4z(1 1 + 4z)w) (1 1 + 4z)(21 + 4z 1 + 4z(1 + 1 + 4z)w) (21 + 4z 1 + 4z(1 + 1 + 4z)w)(21 + 4z 1 + 4z(1 1 + 4z)w) = 1 + 1 + 4z 21 + 4z 1 + 4z(1 + 1 + 4z)w 1 1 + 4z 21 + 4z 1 + 4z(1 1 + 4z)w = 1 + 1 + 4z 21 + 4z 1 + 4z(1 + 1 + 4z)w 1 1 + 4z 21 + 4z 1 + 4z(1 1 + 4z)w = 1 1 + 4z 1 + 1 + 4z 2 1 1 1+1+4z 2 w 1 1 + 4z 1 1 + 4z 2 1 1 11+4z 2 w = 1 1 + 4z 1 + 1 + 4z 2 n0 1 + 1 + 4z 2 nwn 1 1 + 4z 1 1 + 4z 2 n0 1 1 + 4z 2 nwn by Eq. (5) = 1 1 + 4z n0 1 + 1 + 4z 2 n+1wn n0 1 1 + 4z 2 n+1wn = n0 1 1 + 4z 1 + 1 + 4z 2 n+1 1 1 + 4z 2 n+1 wn

if and only if

Gn(z) = 1 + 1 + 4z 2 n+1 1 1 + 4z 2 n+1 1 + 4z;

and if z = 1 4,

n0Gn 1 4wn = 1 1 w + 1 4w2 = 1 1 4w2 1 2w 1 2w + 1 = 1 w 2 12 = 1 1 w 2 2 = 1 1 w 2 2 = n0 1 2nwn 2 by Eq. (5) = n0 0kn 1 2kwk 1 2nkwnk by Eq. (6) = n0 0kn 1 2nwn = n0 1 2nwn 0kn1 = n0 1 2nwn(n + 1) = n0(n + 1) 2n wn,

so that for n 0,

Gn 1 4 = (n + 1)2n.

Hence, for n 0,

Gn(z) = 1+1+4z 2 n+1 11+4z 2 n+1 1 + 4zif z 1 4 (n + 1)2n otherwise.

16. [M22] Give a simple formula for the generating function Gnr(z) = kankrzk, where ankr is the number of ways to choose k out of n objects, subject to the condition that each object may be chosen at most r times. (If r = 1, we have n k ways, and if r k, we have the number of combinations with repetitions as in exercise 1.2.6-60.)

We want to find an,k,r, the number of ways to choose k out of n objects, subject to the condition that each object may be chosen at most r times.

Letting z be the formal parameter of our generating function Gn,r(z), the number of ways to choose an object zero times is [z0]G1,0(z) = 1; the number of ways to choose an object one time is [z1]G1,1 = 1; and the number of ways to choose an object r times is [zr]G1,r = 1. That is, G1,r(z) = 1 + z + + zr. For n classes of objects, this is then given by the generating function

Gn,r(z) = (1 + z + + zr)n = (1 zr+1 1 z )n.

In the case that r = 1, we have that

Gn,1(z) = (1 + z)n = kn kzk,

or equivalently that an,k,1 = n k ; and in the case that r k,

Gn,r(z) = (1 + z + )n = ( 1 1 z)n = (1 z)n = kn k (z)k = k(1)kk (n + k 1) 1 k zk = kn + k 1 k zk by Eq. 1.2.6-(17)

as shown in exercise 1.2.6-60, or equivalently that an,k,r = n+k1 k for r k, r .

________________________________________________________________________________

[exercise 1.2.6-60]

17. [M25] What are the coefficients of 1(1 z)w if this function is expanded into a double power series in terms of both z and w?

We have

1(1 z)w = 1(1 z)(w1)+1 = k(w 1) 1 k (z)k by Eq. (20) = kw k (z)k = k(1)kw k zk = k(1)k (w)k̲k!zk by Eq. 1.2.6-(3) = k(1)k(w)k̲zkk! = kwk¯zkk! by Eq. 1.2.5-(20) = k 0nk1(w + n)zkk! by Eq. 1.2.5-(19) = k nk nwnzkk! by Eq. (27) = k,nk nwnzkk!.

18. [M25] Given positive integers n and r, find a simple formula for the value of the following sums: (a) 1k1<k2<<krnk1k2kr; (b) 1k1k2krnk1k2kr. (For example, when n = 3 and r = 2 the sums are, respectively, 1 2 + 1 3 + 2 3 and 1 1 + 1 2 + 1 3 + 2 2 + 2 3 + 3 3.)

We may find simple formulas for the sums, given positive integers n and r.

a)
For 1k1<k2<<krnk1k2kr we have
Gn(z) = j0 1k1<<krnk1krzj = 1jn(1 + jz) by exercise 10 = zn+1 0j(n+1)1 1 z + j = zn+1 kn + 1 k 1 zk by Eq. (27) = zn+1 kn + 1 k zk = kn + 1 k zn+1k = r n + 1 n + 1 rzr,

so that the formula is given by

1k1<k2<<krnk1k2kr = n + 1 n + 1 r.
b)
For 1k1k2krnk1k2kr we have
Gn(z) = j0 1k1krnk1krzj = 1jn 1 1 jz by exercise 7 = 1 1jn(1 jz) = zn zn 1jn(1 jz) = zn kk nzk by Eq. (28) = kk nzkn = rn + r n zr,

so that the formula is given by

1k1k2krnk1k2kr = n + r n .

19. [HM32] (C. F. Gauss, 1812.) The sums of the following infinite series are well known:

1 1 2 + 1 3 1 4 + = ln 2;1 1 3 + 1 5 1 7 + = π 4 ;
1 1 4 + 1 7 1 10 + = π3 9 + 1 3ln 2.

Using the definition

Hx = n1 1 n 1 n + x

found in the answer to exercise 1.2.7-24, these series may be written respectively as

1 1 2H12;2 3 1 4H14 + 1 4H34;3 4 1 6H16 + 1 6H23.

Prove that, in general, Hpq has the value

q p π 2 cot p qπ ln 2q + 2 0<k<q2 cos 2pk q π ln sin k qπ,

where p and q are integers with 0 < p < q. [Hint: By Abel’s limit theorem the sum is

lim x1 n1 1 n 1 n + pqxp+nq.

Use Eq. (13) to express this power series in such a way that the limit can be evaluated.]

Proposition. Hpq has the value

Hpq = q p π 2 cot p qπ ln 2q + 2 0<k<q2 cos 2pk q π ln sin k qπ,

when p and q are integers with 0 < p < q.

Proof. As a preliminary identity, observe that

ln (1 ei𝜃) = ln 2ei(𝜃π)2ei𝜃2 ei𝜃2 2i = ln 2 + ln ei(𝜃π)2 + ln ei𝜃2 ei𝜃2 2i = ln 2 + 1 2i(𝜃 π) + ln ei𝜃2 ei𝜃2 2i = ln 2 + 1 2i(𝜃 π) + ln sin 𝜃 2. (19.1)

Let p,q be artibtrary integers such that 0 < p < q, and define Hx as

Hx = n1 1 n 1 n + x

for any nonnegative rational number x. We must show that

Hpq = q p π 2 cot p qπ ln 2q + 2 0<k<q2 cos 2pk q π ln sin k qπ.

We have

Hpq = n1 1 n 1 n + pq.

By Abel’s limit theorem,

n1 1 n 1 n + pq = lim x1 n1 1 n 1 n + pqxp+nq.

Then,

lim x1 n1 1 n 1 n + pqxp+nq = lim x1 n1 1 nxp+nq n1 1 n + pqxp+nq .

For the left sum,

n1 1 nxp+nq = xp n1 1 n(xq)n = xp n1(1)2n+1 n (xq)n = xp n1(1)n+1 n (xq)n = xp ln (1 xq). by Eq. (24)

For the right sum with ω = e2πiq,

n1 1 n + pqxp+nq = n>0 p+nqmodq=p q p + nqxp+nq = q pxp n0 p+nqmodq=p q p + nqxp+nq = q pxp 1 q 0k<qωkp n1 q nωknxn by Eq. (13) = q pxp 0k<qωkp n1 1 n(ωkx)n = q pxp + 0k<qωkp n1(1)2n+1 n (ωkx)n = q pxp + 0k<qωkp n1(1)n+1 n (ωkx)n = q pxp + 0k<qωkp ln (1 ωkx). by Eq. (24)

That is,

Hpq = lim x1 0k<qωkp ln (1 ωkx) xp ln (1 xq) + q pxp .

Continuing in the limit as x 1,

0k<qωkp ln (1 ωkx) xp ln (1 xq) + q pxp = 1k<qωkp ln (1 ωkx) + ln (1 x) xp ln (1 xq) + q pxp = 1k<qωkp ln (1 ωkx) + ln (1 x) + q pxp xp ln (1 xq) + xp ln (1 x) xp ln (1 x) = 1k<qωkp ln (1 ωkx) + (1 xp)ln (1 x) + q pxp xp ln 1 xq 1 x .(19.2)

The limit of the first term is

lim x1 1k<qωkp ln (1 ωkx) = 1k<qωkp ln (1 ωk) = 1k<qωkp ln 2 + 1 2i(2πkq π) + ln sin 2πkq 2 by (19.1) = 1k<qωkp ln 2 + iπk q iπ 2 + ln sin k qπ = 1k<qωkp ln 2 + iπk q iπ 2 + 1k<qωkp ln sin k qπ,

and the limit of the remaining terms of (19.2) is

lim x1(1 xp)ln (1 x) + q pxp xp ln 1 xq 1 x = q p ln q;

but

1k<qωkp ln 2 + iπk q iπ 2 = 1k<qωkp ln 2 + 1k<qωkpiπk q 1k<qωkpiπ 2 = ln 2(ωp(q1) 1) ωp 1 + 1k<qωkpiπk q 1k<qωkpiπ 2 = ln 2(ωp(q1) 1) ωp 1 + iπωp(q1)(q(ωp) + ωpq + q 1) q(ωp 1)2 1k<qωkpiπ 2 = ln 2(ωp(q1) 1) ωp 1 + iπωp(q1)(q(ωp) + ωpq + q 1) q(ωp 1)2 iπ(ωp(q1) 1) 2(ωp 1) = ln 2(ωp 1) ωp 1 + iπωp(q1)(q(ωp) + ωpq + q 1) q(ωp 1)2 iπ(ωp(q1) 1) 2(ωp 1) = ln 2 + iπωp(q1)(q(ωp) + ωpq + q 1) q(ωp 1)2 iπ(ωp(q1) 1) 2(ωp 1) = ln 2 + iπωp(q1)(q(ωp) + ωpq + q 1) q(ωp 1)2 + iπ(ωp 1) 2(ωp 1) = ln 2 + iπωp(q1)(q(ωp) + ωpq + q 1) q(ωp 1)2 + iπ 2 = ln 2 + iπ 2 + iπωp(q1)(q(ωp) + ωpq + q 1) q(ωp 1)2 = ln 2 + iπ 2 + iπωp(q1)(q(ωp) + q) q(ωp 1)2 = ln 2 + iπ 2 + iπωp(q1)(ωp + 1) (ωp 1)2 = ln 2 + iπ 2 iπωp(ωp 1) (ωp 1)2 = ln 2 + iπ 2 iπωp ωp 1 = ln 2 + iπ 2 iπ ωp + 1 = ln 2 + iπ 2 + iπ ωp 1,

and

1k<qωkp ln sin k qπ = 1k<q2 ωkp + ω(qk)p ln sin k qπ = 1k<q22ωpq2 cos πp(q 2k) q ln sin k qπ = 2 1k<q2 cos πp(q 2k) q ln sin k qπ = 2 1k<q2 cos 2πpq 2q 2πpk q ln sin k qπ = 2 1k<q2 cos 2πpk q ln sin k qπ = 2 0<k<q2 cos 2pk q π ln sin k pπ.

Finally,

i 2 + i ωp 1 = 1 2cot p qπ.

Hence,

Hpq = q p π 2 cot p qπ ln 2q + 2 0<k<q2 cos 2pk q π ln sin k qπ,

as we needed to show. □

______________________________________________________________________________________________________________________________

[exercise 1.2.7-24; C. F. Gauss, §33 of his monograph on hypergeometric series, Eq. [75]; Abel, Crelle 1 (1826), 314–315]

20. [M21] For what coefficients cmk is n0nmzn = k=0mcmkzk(1 z)k+1?

First, observe that multiplying both sides of Eq. (20) by zn yields

zn (1 z)n+1 = zn k0n + k n zk = k0n + k n zn+k = n0n kzn.

We then have

n0nmzn = n0 km k nk̲zn by Eq. 1.2.6-(45) = km k n0nk̲zn = kk!m k n0nk̲ k! zn = kk!m k n0n kzn = kk!m k zn (1 z)n+1,

so that

cm,k = k!m k .

21. [HM30] Set up the generating function for the sequence n! and study properties of this function.

Let G(z) = n0n!zn be the generating function for the sequence n!. Given the recurrence

n! = n(n 1)! + [n = 0]

we have that

G(z) = n0n!zn = n0n(n 1)!zn + n=0zn = n0n(n 1)!zn + 1 = n0(n + 1)n!zn+1 + 1 = n0(n)n!zn+1 + n0n!zn+1 + 1 = n0(n)n!zn+1 + z n0n!zn + 1 = n0(n)n!zn+1 + zG(z) + 1 = n0(n + 1)(n + 1)!zn+2 + zG(z) + 1 = z2 n0(n + 1)(n + 1)!zn + zG(z) + 1 = z2G(z) + zG(z) + 1. by Eq. (14)

This is the ordinary differential equation

z2G(z) + (z 1)G(z) + 1 = 0,

satisfied by

G(z) = e1z z E1(1z) + C,

for the exponential integral E1(z) =z 1 tetdt and constant C; that is,

G(z) = e1z z 1z 1 tetdt + C,

since

d dzG(z) = d dz e1z z E1(1z) + C = e1z z d dz E1(1z) + C + d dz e1z z E1(1z) + C = e1z z d dz E1(1z) + C + d dz e1z z + e1z d dzz z2 E1(1z) + C = e1z z d dz E1(1z) + C + e1z d dz 1zz + e1z z2 E1(1z) + C = e1z z d dz E1(1z) + C + e1z 1z2 z + e1z z2 E1(1z) + C = e1z z d dz E1(1z) + C + e1z 1z + e1z z2 E1(1z) + C = e1z z d dz E1(1z) + C + e1z + ze1z z3 E1(1z) + C = e1z z d dz E1(1z) + C + (z 1)e1z z3 E1(1z) + C = e1z z d dz E1(1z) + C z 1 z2 e1z z E1(1z) + C = e1z z d dz E1(1z) + C z 1 z2 G(z) = e1z z d dz 1z 1 tetdt + C z 1 z2 G(z) = e1z z ze1z d dz 1 z z 1 z2 G(z) = e1z z ze1z 1 z2 z 1 z2 G(z) = e1z z e1z1 z z 1 z2 G(z) = e1z z e1z z z 1 z2 G(z) = 1 z2 z 1 z2 G(z) = 1 z2 1 + (z 1)G(z)

and

z2G(z) + (z 1)G(z) + 1 = z2 1 z2 1 + (z 1)G(z) + (z 1)G(z) + 1 = 1 + (z 1)G(z) + (z 1)G(z) + 1 = 1 (z 1)G(z) + (z 1)G(z) + 1 = 0.

This generating function diverges, as may be verified using the root test, since for positive n,

n!n nn+1 en1 n by exercise 1.2.5-24 nn en n = n e

is unbounded.

________________________________________________________________________________

[K. Knopp, Infinite Sequences and Series (Dover, 1956), Section 66 [sic]]

22. [M21] Find a generating function G(z) for which

[zn]G(z) = k0+2k1+4k2+8k3+=n r k0 r k1 r k2 r k3.

As a preliminary, observe that if z is an arbitrary complex number such that |z| < 1, we have that

i0 1 + z2i = 1 1 z,

since

(1 z) i0 1 + z2i = (1 z)lim j i=0j 1 + z2i = lim j(1 z) i=0j 1 + z2i = lim j(1 z)(1 + z) i=1j 1 + z2i = lim j1 z2 i=1j 1 + z2i = lim j1 z2 1 + z2 i=2j 1 + z2i = lim j1 z22 i=2j 1 + z2i = = lim j1 z2j 1 + z2j = lim j1 z2j+1 = 1.

Now, for the given sum,

20k0+21k1+22k2+=n r k0 r k1 r k2,

we may generate the r ki terms for all i 0 using the binomial theorem as

ki0 r kiz2ik i = ki0 r ki(z2i )ki = 1 + z2i r,

and then multiply them together to arrive at the equivalence

20k0+21k1+22k2+=n r k0 r k1 r k2 = 1 + z20 r 1 + z21 r 1 + z22 r = i0 1 + z2i r = i0 1 + z2i r = 1 1 zr = 1 (1 z)r = (1 z)r.

That is, the generating function is

G(z) = (1 z)r.

Incidentally,

(1 z)r = (z + 1)r = nr n (z)n1rn by Eq. 1.2.6-(13) = n(1)nr n zn = nn (r) 1 n zn by Eq. 1.2.6-(17) = nr + n 1 n zn.

23. [M33] (L. Carlitz.) (a) Prove that for all integers m 1 there are polynomials fm(z1,,zm) and gm(z1,,zm) such that the formula

k1,,km0 r n k1 k1 n k2 km1 n kmz1k1 zmkm = fm(z1,,zm)nrg m(z1,,zm)r

is an identity for all integers n r 0.

(b) Generalizing exercise 15, find a closed form for the sum

Sn(z1,,zm) = k1,,km0 k1 n k2 k2 n k3 km n k1z1k1 zmkm

in terms of the functions fm and gm in part (a).

(c) Find a simple expression for Sn(z1,,zm) when z1 = = zm = z.

The answers to exercise 23 follow below.

(a)
We may prove the identity.

Proposition. For all integers m 1 there are polynomials fm(z1,,zm) and gm(z1,,zm) such that for all integers n r 0,

k1,,km0 r n k1 k1 n k2 km1 n kmz1k1 zmkm = fm(z1,,zm)nrg m(z1,,zm)r.

Proof. Let m be an arbitrary positive integer. We must show that there are polynomials fm(z1,,zm) and gm(z1,,zm) such that for all integers n r 0,

k1,,km0 r n k1 k1 n k2 km1 n kmz1k1 zmkm = fm(z1,,zm)nrg m(z1,,zm)r.

We proceed with a proof by induction on m.

In the case that m = 1, let f1(z1) = z1 and g1(z1) = z1 + 1. Then we must show in this case that

k10 r n k1z1k1 = f1(z1)nrg 1(z1)r = z1nr(z 1 + 1)r.

If r = 0,

k10 0 n k1z1k1 = k1=n 0 n k1z1k1 = 0 0z1n = z1n = z1n0(z 1 + 1)0.

Then, assuming

k10 r n k1z1k1 = z1nr(z 1 + 1)r,

we must show that

k10 r + 1 n k1z1k1 = z1n(r+1)(z 1 + 1)r+1.

But

k10 r + 1 n k1z1k1 = k10 r n k1z1k1 + k10 r n k1 1z1k1 = k10 r n k1z1k1 + k10 r (n 1) k1z1k1 = z1nr(z 1 + 1)r + z 1(n1)r(z 1 + 1)r = z1nr + z 1(n1)r (z 1 + 1)r = z1nr + z 1n(r+1) (z 1 + 1)r = z1z1n(r+1) + z 1n(r+1) (z 1 + 1)r = z1n(r+1)(z 1 + 1)(z1 + 1)r = z1n(r+1)(z 1 + 1)r+1.

As our inductive hypothesis, we assume that there are polynomials fm(z1,,zm) and gm(z1,,zm) such that for all integers n r 0,

k1,,km0 r n k1 k1 n k2 km1 n kmz1k1 zmkm = fm(z1,,zm)nrg m(z1,,zm)r.

We must show that there are polynomials fm+1(z1,,zm+1) and gm+1(z1,,zm+1) such that for all integers n r 0,

k1,,km+10 r n k1 k1 n k2 k(m+1)1 n km+1z1k1 zm+1km+1 = fm+1(z1,,zm+1)nrg m+1(z1,,zm+1)r.

But, set zm zm(1 + zm+11), and let

fm+1(z1,,zm+1) = zm+1fm(z1,,zm(1 + zm+11)), gm+1(z1,,zm+1) = zm+1gm(z1,,zm(1 + zm+11)).

Then

fm+1(z1,,zm+1)nrg m+1(z1,,zm+1)r = zm+1fm(z1,,zm(1 + zm+11))nr z m+1gm(z1,,zm(1 + zm+11))r = zm+1nf m(z1,,zm(1 + zm+11))nrg m(z1,,zm(1 + zm+11))r = zm+1n k1,,km0 r n k1 k1 n k2 km1 n kmz1k1 zm(1 + zm+11)km = zm+1n k1,,km0 r n k1 k1 n k2 km1 n kmz1k1 zmkm (1 + zm+11)km = zm+1n k1,,km0 r n k1 k1 n k2 km1 n kmz1k1 zmkm km+10 km km+11kmkm+1 zm+1km+1 = k1,,km0 r n k1 k1 n k2 km1 n kmz1k1 zmkm km+10 km km+1zm+1nkm+1 = k1,,km0 r n k1 k1 n k2 km1 n kmz1k1 zmkm km+10 k(m+1)1 n km+1zm+1km+1 = k1,,km+10 r n k1 k1 n k2 k(m+1)1 n km+1z1k1 zm+1km+1 .

This is what we needed to show. □

Note that fm(z1,,zm) obeys the recurrence

fm(z1,,zm) = 0 if m < 0 1 if m = 0 z mfm1 + zm1fm2otherwise,

since f1(z1) = z1 = z1f0 + z0f1, and if fm(z1,,zm) = zmfm1 + zm1fm2, then

fm+1(z1,,zm+1) = zm+1fm(z1,,zm1,zm(1 + zm+11)) = zm+1(zm(1 + zm+11)f m1 + zm1fm2) = zm+1(zmzm+11f m1 + zmfm1 + zm1fm2) = zm+1(zmzm+11f m1 + fm) = zmzm+1zm+11f m1 + zm+1fm = zm+1fm + zmfm1;

and similarly gm(z1,,zm) the recurrence

gm(z1,,zm) = 1 if m 0 zmgm1 + zm1gm2otherwise,

since g1(z1) = z1 + 1 = z1g0 + z0g1, and if gm(z1,,zm) = zmgm1 + zm1gm2, then

gm+1(z1,,zm+1) = zm+1gm(z1,,zm1,zm(1 + zm+11)) = zm+1(zm(1 + zm+11)g m1 + zm1gm2) = zm+1(zmzm+11g m1 + zmgm1 + zm1gm2) = zm+1(zmzm+11g m1 + gm) = zmzm+1zm+11g m1 + zm+1gm = zm+1gm + zmgm1.
(b)
We want to find a closed form for the sum
Sn(z1,,zm) = k1,,km0 k1 n k2 k2 n k3 km n k1z1k1 zmkm

in terms of the functions fm and gm of part (a). But

Sn(z1,,zm1,z) = k1,,km0 k1 n k2 k2 n k3 km n k1z1k1 zkm = k1,,km0 km n k1 k1 n k2 km1 n kmz1k1 zkm = [zmn] k1,,km0 km n k1 k1 n k2 km1 n kmz1k1 zkm zmn = [zmn] k1,,km0 r=km r n k1 k1 n k2 km1 n kmz1k1 zrz mnr+km = [zmn] k1,,km0 0rn r n k1 k1 n k2 km1 n kmz1k1 zrz mnr+km = [zmn] k1,,km0 0rn r n k1 k1 n k2 km1 n kmz1k1 zmkm zrz mnr = [zmn] r=0nzrz mnr k1,,km0 r n k1 k1 n k2 km1 n kmz1k1 zmkm = [zmn] r=0nzrz mnrf m(z1,,zm)nrg m(z1,,zm)r.

Then,

Sn(z1,,zm) = [zmn] r=0nz mrz mnrf m(z1,,zm)nrg m(z1,,zm)r = [zmn] r=0nf m(z1,,zm)nrg m(z1,,zm)rz mn = r=0nf m(z1,,zm)nrg m(z1,,zm)r = r=0n(z mfm1 + zm1fm2)nr(z mgm1 + zm1gm2)r = r=0n 0snrn r s (zmfm1)s(z m1fm2)nrs 0snr s(zm1gm2)s(z mgm1)rs = 0srnr s n r s (zmgm1)rs(z m1gm2)s(z mfm1)s(z m1fm2)nrs;

and, by Eq. (20),

Sn(z1,,zm) = 0srnr s n r s (zmgm1)rs(z m1gm2)s(z mfm1)s(z m1fm2)nrs = [zn] s0 rs nrr s n r s (zmgm1z)rs(z m1gm2z)s(z mfm1z)s(z m1fm2z)nrs = [zn] s0(zm1gm2z)s(z mfm1z)s rsr s(zmgm1z)rs nrn r s (zm1fm2z)nrs = [zn] s0(zm1gm2z)s(z mfm1z)s rsr s(zmgm1z)rs nr0n r s (zm1fm2z)nrs = [zn] s0(zm1gm2z)s(z mfm1z)s rsr s(zmgm1z)rs n0n s (zm1fm2z)ns = [zn] s0(zm1gm2z)s(z mfm1z)s rsr s(zmgm1z)rs(z m1fm2z)s n0n s (zm1fm2z)n = [zn] s0(zm1gm2z)s(z mfm1z)s rsr s(zmgm1z)rs(z m1fm2z)s (zm1fm2z)s (1 zm1fm2z)s+1 = [zn] s0(zm1gm2z)s(zmfm1z)s (1 zm1fm2z)s+1 rsr s(zmgm1z)rs = [zn] s0(zm1gm2z)s(zmfm1z)s (1 zm1fm2z)s+1 rs0s + r s s (zmgm1z)rs = [zn] s0(zm1gm2z)s(zmfm1z)s (1 zm1fm2z)s+1 r0s + r s (zmgm1z)r = [zn] s0(zm1gm2z)s(zmfm1z)s (1 zm1fm2z)s+1 1 (1 zmgm1z)s+1 = [zn] s0 (zm1gm2z)s(zmfm1z)s (1 zmgm1z)s+1(1 zm1fm2z)s+1 = [zn] s0 1 1 zmgm1z 1 1 zm1fm2z zm1gm2zmfm1z2 (1 zmgm1z)(1 zm1fm2z)s = [zn] 1 1 zmgm1z 1 1 zm1fm2z 1 1 zm1gm2zmfm1z2((1 zmgm1z)(1 zm1fm2z)) = [zn] 1 zmgm1zm1fm2z2 zmgm1z zm1gm2zmfm1z2 zm1fm2z + 1 = [zn] 1 (1 zmgm1z)(1 zm1fm2z) zm1gm2zmfm1z2.

Let

hm = zmgm1 + zm1fm2

and

(1 ρz)(1 σz) = 1 hmz + (1)mz 1zmz2 1 ρz σz + ρσz2 = 1 h mz + (1)mz 1zmz2 1 (ρ + σ)z + ρσz2 = 1 h mz + (1)mz 1zmz2 ρ + σ = hm ρσ = (1)mz 1zm.

Then, since

zmgm1zm1fm2 zm1gm2zmfm1 = zm1zm(gm1fm2 gm2fm1) = zm1zm((zm1gm2 + zm2gm3)fm2 gm2(zm1fm2 + zm2fm3)) = zm1zm(zm1gm2fm2 + zm2gm3fm2 gm2zm1fm2 gm2zm2fm3) = zm1zm(zm2gm3fm2 gm2zm2fm3) = (1)zm2zm1zm(gm2fm3 gm3fm2) = (1)mz 1zm

we find

Sn(z1,,zm) = [zn] 1 (1 zmgm1z)(1 zm1fm2z) zm1gm2zmfm1z2 = [zn] 1 1 zmgm1z zm1fm2z + zmgm1zm1fm2z2 zm1gm2zmfm1z2 = [zn] 1 1 (zmgm1 + zm1fm2)z + (zmgm1zm1fm2 zm1gm2zmfm1)z2 = [zn] 1 1 hmz + (1)mz1zmz2 = [zn] 1 (1 ρz)(1 σz) = [zn] ρ ρ σ 1 1 ρz + σ σ ρ 1 1 σz = [zn] ρ ρ σ n0ρnzn + σ σ ρ n0σnzn = [zn] n0 ρ ρ σρn + σ σ ρσn zn = [zn] n0 ρn+1 ρ σ σn+1 ρ σzn = [zn] n0ρn+1 σn+1 ρ σ zn = ρn+1 σn+1 ρ σ .
(c)
When z1 = = zm = z, we may simplify Sn(z,,z). In the case m = 1,
ρ1 + σ1 = h1 = z1 = z, ρ1σ1 = (1)1z 1 = z1 = z,

satisfied by

ρ1 = z + z2 + 4z 2 , σ1 = z z2 + 4z 2 ;

and in the case m 1, since

ρm + σm = hm = zgm1 + zfm2 = z(gm1 + fm2) = z(zgm2 + zgm3 + zfm3 + zfm4) = z2(g m2 + gm3 + fm3 + fm4) = = zm = (ρ1 + σ1)m

and

ρmσm = (1)mzm = (z)m = (ρ1σ1)m,

we find in general that

ρm = ρ1m, σm = σ1m.

That is,

Sn(z,,z) = ρmn+1 σmn+1 ρm σm = ρ1m(n+1) σ1m(n+1) ρ1m σ1m = (z + z2 + 4z)2m(n+1) (z z2 + 4z)2m(n+1) (z + z2 + 4z)2m (z z2 + 4z)2m = 1 2mn (z + z2 + 4z)m(n+1) (z z2 + 4z)m(n+1) (z + z2 + 4z)m (z z2 + 4z)m .

______________________________________________________________________________________________________________________________

[exercise 1.2.8-30; L. Carlitz, Collectanea Math. 27 [sic] (1965), 281–296]

24. [M22] Prove that, if G(z) is any generating function, we have

km k [znk]G(z)k = [zn](1 + zG(z))m.

Evaluate both sides of this identity when G(z) is (a) 1(1 z); (b) (ex 1)z.

Proposition. km k [znk]G(z)k = [zn](1 + zG(z))m.

Proof. Suppose G(z) is an arbitrary generating function,

G(z) = n0gnzn.

We must show that

km k [znk]G(z)k = [zn](1 + zG(z))m.

But by a rule of the coefficient of operator2 ,

km k [znk]G(z)k = km k [zn]zkG(z)k = [zn] km k G(z)kzk = [zn] km k zG(z)k = [zn](1 + zG(z))m,

as we needed to show. □

(a)
For G(z) = 1 1z,
km k [znk]G(z)k = km k [znk] 1 1 zk = km k [znk] 1 (1 z)k = km k [znk] n0k + n 1 n zn = km k [znk] nk0k + n k 1 n k znk = km k [znk] nk0 n 1 n kznk = km k n 1 n k

and

[zn](1 + zG(z))m = [zn] 1 + z 1 1 zm = [zn] km k z 1 1 zk = [zn] km k zk 1 (1 z)k = [zn] km k zk nk + n 1 n zn = [zn] km k zk nkn 1 n kznk = [zn] km k zk kn 1 k zk = [zn](1 + z)m(1 + z)n1 = [zn](1 + z)m+n1 = [zn] n0m + n 1 n zn = m + n 1 n .
(b)
For G(z) = ez1 z ,
km k [znk]G(z)k = km k [znk] ez 1 z k = km k [zn]zk ez 1 z k = km k [zn]zk(ez 1)k zk = km k [zn](ez 1)k = km k [zn]k! nn k zn n! by Eq. (23) = km k k![zn] nn k zn n! = km k k!n kn! = kmk̲ k! k!n kn! = kmk̲n kn!

and

[zn](1 + zG(z))m = [zn] 1 + zez 1 z m = [zn] ez m = [zn]emz = [zn] n0(mz)n n! = [zn] n0mn n! zn = mnn!,

since

kmk̲n k = mn.

25. [M23] Evaluate the sum kn k 2n2k nk (2)k by simpliyfing the equivalent formula k[wk](1 2w)n[znk](1 + z)2n2k.

We have

k[wk](1 2w)n[znk](1 + z)2n2k = k[wk](1 2w)n[zn]zk(1 + z)2n2k = [zn] k[wk](1 2w)nzk(1 + z)2n2k = [zn] k[wk](1 2w)nzk(1 + z)2n(1 + z)2k = [zn](1 + z)2n k[wk](1 2w)nzk(1 + z)2k = [zn](1 + z)2n k[wk](1 2w)nzk(1(1 + z)2)k = [zn](1 + z)2n k[wk](1 2w)n(z(1 + z)2)k = [zn](1 + z)2n k[wk](z(1 + z)2)k(1 2w)n = [zn](1 + z)2n k[wk](z(1 + z)2)k jn j (2w)j = [zn](1 + z)2n k[wk](z(1 + z)2)k j(2)jn j wj = [zn](1 + z)2n k(z(1 + z)2)k(2)kn k = [zn](1 + z)2n kn k (2z(1 + z)2)k = [zn](1 + z)2n(1 2z(1 + z)2)n = [zn] (1 + z)2(1 2z(1 + z)2)n = [zn] (1 + z)2 2zn = [zn](1 + z2)n = [zn] kn k (z2)k = [zn] kn kz2k = [zn] k2 k even n k2zk = n n2[n even].

______________________________________________________________________________________________________________________________

[G. P. Egorychev, Integral Representation and the Computation of Combintatorial Sums (Amer. Math. Soc., 1984)]

26. [M40] Explore a generalization of the notation (31) according to which we might write, for example, [z2 2z5]G(z) = a2 2a5 when G(z) is given by (1).

n.a.

________________________________________________________________________________

[D. E. Knuth, A Classical Mind (Prentice-Hall, 1994), 247–258]